The two uniform infinite quadrangulations of the plane have the same law
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 190-208
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMénard, Laurent. "The two uniform infinite quadrangulations of the plane have the same law." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 190-208. <http://eudml.org/doc/241421>.
@article{Ménard2010,
abstract = {We prove that the uniform infinite random quadrangulations defined respectively by Chassaing–Durhuus and Krikun have the same distribution.},
author = {Ménard, Laurent},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random map; random tree; Schaeffer’s bijection; uniform infinite planar quadrangulation; uniform infinite planar tree; random planar maps; random labeled trees; Schaeffer's bijection},
language = {eng},
number = {1},
pages = {190-208},
publisher = {Gauthier-Villars},
title = {The two uniform infinite quadrangulations of the plane have the same law},
url = {http://eudml.org/doc/241421},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Ménard, Laurent
TI - The two uniform infinite quadrangulations of the plane have the same law
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 190
EP - 208
AB - We prove that the uniform infinite random quadrangulations defined respectively by Chassaing–Durhuus and Krikun have the same distribution.
LA - eng
KW - random map; random tree; Schaeffer’s bijection; uniform infinite planar quadrangulation; uniform infinite planar tree; random planar maps; random labeled trees; Schaeffer's bijection
UR - http://eudml.org/doc/241421
ER -
References
top- [1] J. Ambjørn, B. Durhuus and T. Jonsson. Quantum Geometry. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. Zbl1096.82500MR1465433
- [2] O. Angel. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 (2003) 935–974. Zbl1039.60085MR2024412
- [3] O. Angel. Scaling of percolation on infinite planar maps, i. Preprint, 2005. Available at http://arxiv.org/abs/math/0501006.
- [4] O. Angel and O. Schramm. Uniform infinite planar triangulations. Comm. Math. Phys. 241 (2003) 191–213. Zbl1098.60010MR2013797
- [5] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. Zbl0259.60002MR373040
- [6] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) 27 pp. (electronic). Zbl1060.05045MR2097335
- [7] P. Chassaing and B. Durhuus. Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 (2006) 879–917. Zbl1102.60007MR2243873
- [8] P. Chassaing and G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004) 161–212. Zbl1041.60008MR2031225
- [9] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math. 33 (1981) 1023–1042. Zbl0415.05020MR638363
- [10] M. Krikun. A uniformly distributed infinite planar triangulation and a related branching process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 307 (2004) 141–174, 282–283. Zbl1074.60027MR2050691
- [11] M. Krikun. Local structure of random quadrangulations. Preprint, 2006. Available at http://arxiv.org/abs/math/0512304.
- [12] J. Lamperti. A new class of probability limit theorems. J. Math. Mech. 11 (1962) 749–772. Zbl0107.35602MR148120
- [13] J.-F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007) 621–670. Zbl1132.60013MR2336042
- [14] J.-F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (2008) 893–918. Zbl1166.60006MR2438999
- [15] J.-F. Marckert and G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642–1705. Zbl1208.05135MR2349571
- [16] J.-F. Marckert and A. Mokkadem. States spaces of the snake and its tour—convergence of the discrete snake. J. Theoret. Probab. 16 (2004) 1015–1046. Zbl1044.60083MR2033196
- [17] J. Neveu. Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 199–207. Zbl0601.60082MR850756
- [18] G. Schaeffer. Conjugaisons d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Université de Bordeaux I, 1998.
- [19] W. T. Tutte. A census of planar maps. Canad. J. Math. 15 (1963) 249–271. Zbl0115.17305MR146823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.