A stochastic min-driven coalescence process and its hydrodynamical limit

Anne-Laure Basdevant; Philippe Laurençot; James R. Norris; Clément Rau

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 2, page 329-357
  • ISSN: 0246-0203

Abstract

top
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.

How to cite

top

Basdevant, Anne-Laure, et al. "A stochastic min-driven coalescence process and its hydrodynamical limit." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 329-357. <http://eudml.org/doc/241571>.

@article{Basdevant2011,
abstract = {A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.},
author = {Basdevant, Anne-Laure, Laurençot, Philippe, Norris, James R., Rau, Clément},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic coalescence; min-driven clustering; hydrodynamical limit},
language = {eng},
number = {2},
pages = {329-357},
publisher = {Gauthier-Villars},
title = {A stochastic min-driven coalescence process and its hydrodynamical limit},
url = {http://eudml.org/doc/241571},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Basdevant, Anne-Laure
AU - Laurençot, Philippe
AU - Norris, James R.
AU - Rau, Clément
TI - A stochastic min-driven coalescence process and its hydrodynamical limit
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 329
EP - 357
AB - A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
LA - eng
KW - stochastic coalescence; min-driven clustering; hydrodynamical limit
UR - http://eudml.org/doc/241571
ER -

References

top
  1. [1] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3–48. Zbl0930.60096MR1673235
  2. [2] J. M. Ball, J. Carr and O. Penrose. The Becker–Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Comm. Math. Phys. 104 (1986) 657–692. Zbl0594.58063MR841675
  3. [3] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
  4. [4] J. Carr and R. L. Pego. Self-similarity in a cut-and-paste model of coarsening. Proc. Roy. Soc. London A 456 (2000) 1281–1290. Zbl0978.82055MR1809962
  5. [5] R. W. R. Darling and J. R. Norris. Differential equation approximations for Markov chains. Probab. Surv. 5 (2008) 37–79. Zbl1189.60152MR2395153
  6. [6] C. Dellacherie and P.-A. Meyer. Probabilités et Potentiel, Chapters I and IV. Hermann, Paris, 1975. Zbl0138.10402MR488194
  7. [7] B. Derrida, C. Godrèche and I. Yekutieli. Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44 (1991) 6241–6251. 
  8. [8] M. Escobedo, S. Mischler and B. Perthame. Gelation in coagulation and fragmentation models. Comm. Math. Phys. 231 (2002) 157–188. Zbl1016.82027MR1947695
  9. [9] T. Gallay and A. Mielke. Convergence results for a coarsening model using global linearization. J. Nonlinear Sci. 13 (2003) 311–346. Zbl1025.35006MR1982018
  10. [10] I. Jeon. Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys. 194 (1998) 541–567. Zbl0910.60083MR1631473
  11. [11] I. Jeon. Spouge’s conjecture on complete and instantaneous gelation. J. Statist. Phys. 96 (1999) 1049–1070. Zbl0962.82046MR1722986
  12. [12] P. Laurençot. The Lifshitz–Slyozov equation with encounters. Math. Models Methods Appl. Sci. 11 (2001) 731–748. Zbl1013.35054MR1833001
  13. [13] P. Laurençot and S. Mischler. On coalescence equations and related models. In Modeling and Computational Methods for Kinetic Equations 321–356. P. Degond, L. Pareschi and G. Russo (Eds). Birkhäuser, Boston, 2004. Zbl1105.82027MR2068589
  14. [14] Lê Châu-Hoàn. Etude de la classe des opérateurs m-accrétifs de L1(Ω) et accrétifs dans L∞(Ω). Thèse de 3ème cycle, Université de Paris VI, 1977. 
  15. [15] F. Leyvraz. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383 (2003) 95–212. 
  16. [16] A. Lushnikov. Coagulation in finite systems. J. Colloid Interface Sci. 65 (1978) 276–285. 
  17. [17] A. H. Marcus. Stochastic coalescence. Technometrics 10 (1968) 133–143. MR223151
  18. [18] G. Menon, B. Niethammer and R. L. Pego. Dynamics and self-similarity in min-driven clustering. Trans. Amer. Math. Soc. To appear. Zbl1211.82038MR2678987
  19. [19] J. R. Norris. Markov Chains. Cambridge Univ. Press, Cambridge, 1997. Zbl0938.60058
  20. [20] J. R. Norris. Smoluchowski’s coagulation equation: Uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent. Ann. Appl. Probab. 9 (1999) 78–109. Zbl0944.60082MR1682596
  21. [21] M. Smoluchowski. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr. 17 (1916) 557–599. 
  22. [22] M. Smoluchowski. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92 (1917) 129–168. 
  23. [23] J. A. D. Wattis. An introduction to mathematical models of coagulation-fragmentation processes: A deterministic mean-field approach. Phys. D 222 (2006) 1–20. Zbl1113.35145MR2265763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.