A stochastic min-driven coalescence process and its hydrodynamical limit
Anne-Laure Basdevant; Philippe Laurençot; James R. Norris; Clément Rau
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 329-357
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBasdevant, Anne-Laure, et al. "A stochastic min-driven coalescence process and its hydrodynamical limit." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 329-357. <http://eudml.org/doc/241571>.
@article{Basdevant2011,
abstract = {A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.},
author = {Basdevant, Anne-Laure, Laurençot, Philippe, Norris, James R., Rau, Clément},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic coalescence; min-driven clustering; hydrodynamical limit},
language = {eng},
number = {2},
pages = {329-357},
publisher = {Gauthier-Villars},
title = {A stochastic min-driven coalescence process and its hydrodynamical limit},
url = {http://eudml.org/doc/241571},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Basdevant, Anne-Laure
AU - Laurençot, Philippe
AU - Norris, James R.
AU - Rau, Clément
TI - A stochastic min-driven coalescence process and its hydrodynamical limit
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 329
EP - 357
AB - A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
LA - eng
KW - stochastic coalescence; min-driven clustering; hydrodynamical limit
UR - http://eudml.org/doc/241571
ER -
References
top- [1] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3–48. Zbl0930.60096MR1673235
- [2] J. M. Ball, J. Carr and O. Penrose. The Becker–Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Comm. Math. Phys. 104 (1986) 657–692. Zbl0594.58063MR841675
- [3] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
- [4] J. Carr and R. L. Pego. Self-similarity in a cut-and-paste model of coarsening. Proc. Roy. Soc. London A 456 (2000) 1281–1290. Zbl0978.82055MR1809962
- [5] R. W. R. Darling and J. R. Norris. Differential equation approximations for Markov chains. Probab. Surv. 5 (2008) 37–79. Zbl1189.60152MR2395153
- [6] C. Dellacherie and P.-A. Meyer. Probabilités et Potentiel, Chapters I and IV. Hermann, Paris, 1975. Zbl0138.10402MR488194
- [7] B. Derrida, C. Godrèche and I. Yekutieli. Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44 (1991) 6241–6251.
- [8] M. Escobedo, S. Mischler and B. Perthame. Gelation in coagulation and fragmentation models. Comm. Math. Phys. 231 (2002) 157–188. Zbl1016.82027MR1947695
- [9] T. Gallay and A. Mielke. Convergence results for a coarsening model using global linearization. J. Nonlinear Sci. 13 (2003) 311–346. Zbl1025.35006MR1982018
- [10] I. Jeon. Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys. 194 (1998) 541–567. Zbl0910.60083MR1631473
- [11] I. Jeon. Spouge’s conjecture on complete and instantaneous gelation. J. Statist. Phys. 96 (1999) 1049–1070. Zbl0962.82046MR1722986
- [12] P. Laurençot. The Lifshitz–Slyozov equation with encounters. Math. Models Methods Appl. Sci. 11 (2001) 731–748. Zbl1013.35054MR1833001
- [13] P. Laurençot and S. Mischler. On coalescence equations and related models. In Modeling and Computational Methods for Kinetic Equations 321–356. P. Degond, L. Pareschi and G. Russo (Eds). Birkhäuser, Boston, 2004. Zbl1105.82027MR2068589
- [14] Lê Châu-Hoàn. Etude de la classe des opérateurs m-accrétifs de L1(Ω) et accrétifs dans L∞(Ω). Thèse de 3ème cycle, Université de Paris VI, 1977.
- [15] F. Leyvraz. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383 (2003) 95–212.
- [16] A. Lushnikov. Coagulation in finite systems. J. Colloid Interface Sci. 65 (1978) 276–285.
- [17] A. H. Marcus. Stochastic coalescence. Technometrics 10 (1968) 133–143. MR223151
- [18] G. Menon, B. Niethammer and R. L. Pego. Dynamics and self-similarity in min-driven clustering. Trans. Amer. Math. Soc. To appear. Zbl1211.82038MR2678987
- [19] J. R. Norris. Markov Chains. Cambridge Univ. Press, Cambridge, 1997. Zbl0938.60058
- [20] J. R. Norris. Smoluchowski’s coagulation equation: Uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent. Ann. Appl. Probab. 9 (1999) 78–109. Zbl0944.60082MR1682596
- [21] M. Smoluchowski. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr. 17 (1916) 557–599.
- [22] M. Smoluchowski. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92 (1917) 129–168.
- [23] J. A. D. Wattis. An introduction to mathematical models of coagulation-fragmentation processes: A deterministic mean-field approach. Phys. D 222 (2006) 1–20. Zbl1113.35145MR2265763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.