On Wiener–Hopf factors for stable processes

Piotr Graczyk; Tomasz Jakubowski

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 9-19
  • ISSN: 0246-0203

Abstract

top
We give a series representation of the logarithm of the bivariate Laplace exponent κ of α-stable processes for almost all α ∈ (0, 2].

How to cite

top

Graczyk, Piotr, and Jakubowski, Tomasz. "On Wiener–Hopf factors for stable processes." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 9-19. <http://eudml.org/doc/241592>.

@article{Graczyk2011,
abstract = {We give a series representation of the logarithm of the bivariate Laplace exponent κ of α-stable processes for almost all α ∈ (0, 2].},
author = {Graczyk, Piotr, Jakubowski, Tomasz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stable process; Wiener–Hopf factorization; Wiener-Hopf factorization},
language = {eng},
number = {1},
pages = {9-19},
publisher = {Gauthier-Villars},
title = {On Wiener–Hopf factors for stable processes},
url = {http://eudml.org/doc/241592},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Graczyk, Piotr
AU - Jakubowski, Tomasz
TI - On Wiener–Hopf factors for stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 9
EP - 19
AB - We give a series representation of the logarithm of the bivariate Laplace exponent κ of α-stable processes for almost all α ∈ (0, 2].
LA - eng
KW - stable process; Wiener–Hopf factorization; Wiener-Hopf factorization
UR - http://eudml.org/doc/241592
ER -

References

top
  1. [1] A. Baker. A Concise Introduction to the Theory of Numbers. Cambridge Univ. Press, Cambridge, 1984. Zbl0554.10001MR781734
  2. [2] V. Bernyk, R. C. Dalang and G. Peskir. The law of the supremum of a stable Lévy process with no negative jumps. Ann. Probab. 36 (2008) 1777–1789. Zbl1185.60051MR2440923
  3. [3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
  4. [4] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 (1973) 273–296. Zbl0238.60036MR415780
  5. [5] F. Caravenna and L. Chaumont. Invariance principles for random walks conditioned to stay positive. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 170–190. Zbl1175.60029MR2451576
  6. [6] L. Chaumont, A. E. Kyprianou and J. C. Pardo. Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 (2009) 980–1000. Zbl1170.60017MR2499867
  7. [7] D. A. Darling. The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83 (1956) 164–169. Zbl0074.34003MR80393
  8. [8] R. A. Doney. On Wiener–Hopf factorisation and the distribution of extrema for certain stable processes. Ann. Probab. 15 (1987) 1352–1362. Zbl0631.60069MR905336
  9. [9] P. Graczyk and T. Jakubowski. On exit time of symmetric α-stable processes. Preprint, 2009. MR2779394
  10. [10] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, 7th edition. Elsevier/Academic Press, Amsterdam, 2007. Zbl1208.65001MR2360010
  11. [11] A. Kuznetsov. Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes. J. Appl. Probab. (2009). To appear. Zbl1222.60038MR2752893
  12. [12] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl1104.60001MR2250061
  13. [13] A. E. Kyprianou and Z. Palmowski. Fluctuations of spectrally negative Markov additive processes. In Séminaire de probabilités XLI. Lecture Notes in Math. 1934121–135. Springer, Berlin, 2008. Zbl1156.60060MR2483728
  14. [14] M. Waldschmidt. Private communication, 2009. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.