On Wiener–Hopf factors for stable processes
Piotr Graczyk; Tomasz Jakubowski
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 9-19
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGraczyk, Piotr, and Jakubowski, Tomasz. "On Wiener–Hopf factors for stable processes." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 9-19. <http://eudml.org/doc/241592>.
@article{Graczyk2011,
abstract = {We give a series representation of the logarithm of the bivariate Laplace exponent κ of α-stable processes for almost all α ∈ (0, 2].},
author = {Graczyk, Piotr, Jakubowski, Tomasz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stable process; Wiener–Hopf factorization; Wiener-Hopf factorization},
language = {eng},
number = {1},
pages = {9-19},
publisher = {Gauthier-Villars},
title = {On Wiener–Hopf factors for stable processes},
url = {http://eudml.org/doc/241592},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Graczyk, Piotr
AU - Jakubowski, Tomasz
TI - On Wiener–Hopf factors for stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 9
EP - 19
AB - We give a series representation of the logarithm of the bivariate Laplace exponent κ of α-stable processes for almost all α ∈ (0, 2].
LA - eng
KW - stable process; Wiener–Hopf factorization; Wiener-Hopf factorization
UR - http://eudml.org/doc/241592
ER -
References
top- [1] A. Baker. A Concise Introduction to the Theory of Numbers. Cambridge Univ. Press, Cambridge, 1984. Zbl0554.10001MR781734
- [2] V. Bernyk, R. C. Dalang and G. Peskir. The law of the supremum of a stable Lévy process with no negative jumps. Ann. Probab. 36 (2008) 1777–1789. Zbl1185.60051MR2440923
- [3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [4] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 (1973) 273–296. Zbl0238.60036MR415780
- [5] F. Caravenna and L. Chaumont. Invariance principles for random walks conditioned to stay positive. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 170–190. Zbl1175.60029MR2451576
- [6] L. Chaumont, A. E. Kyprianou and J. C. Pardo. Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 (2009) 980–1000. Zbl1170.60017MR2499867
- [7] D. A. Darling. The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83 (1956) 164–169. Zbl0074.34003MR80393
- [8] R. A. Doney. On Wiener–Hopf factorisation and the distribution of extrema for certain stable processes. Ann. Probab. 15 (1987) 1352–1362. Zbl0631.60069MR905336
- [9] P. Graczyk and T. Jakubowski. On exit time of symmetric α-stable processes. Preprint, 2009. MR2779394
- [10] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, 7th edition. Elsevier/Academic Press, Amsterdam, 2007. Zbl1208.65001MR2360010
- [11] A. Kuznetsov. Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes. J. Appl. Probab. (2009). To appear. Zbl1222.60038MR2752893
- [12] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl1104.60001MR2250061
- [13] A. E. Kyprianou and Z. Palmowski. Fluctuations of spectrally negative Markov additive processes. In Séminaire de probabilités XLI. Lecture Notes in Math. 1934121–135. Springer, Berlin, 2008. Zbl1156.60060MR2483728
- [14] M. Waldschmidt. Private communication, 2009.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.