Invariance principles for random walks conditioned to stay positive
Francesco Caravenna; Loïc Chaumont
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 1, page 170-190
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCaravenna, Francesco, and Chaumont, Loïc. "Invariance principles for random walks conditioned to stay positive." Annales de l'I.H.P. Probabilités et statistiques 44.1 (2008): 170-190. <http://eudml.org/doc/77960>.
@article{Caravenna2008,
abstract = {Let \{Snbe a random walk in the domain of attraction of a stable law $\mathcal \{Y\}$, i.e. there exists a sequence of positive real numbers (
an) such that Sn/anconverges in law to $\mathcal \{Y\}$. Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.},
author = {Caravenna, Francesco, Chaumont, Loïc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; stable law; Lévy process; conditioning to stay positive; invariance principle},
language = {eng},
number = {1},
pages = {170-190},
publisher = {Gauthier-Villars},
title = {Invariance principles for random walks conditioned to stay positive},
url = {http://eudml.org/doc/77960},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Caravenna, Francesco
AU - Chaumont, Loïc
TI - Invariance principles for random walks conditioned to stay positive
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 1
SP - 170
EP - 190
AB - Let {Snbe a random walk in the domain of attraction of a stable law $\mathcal {Y}$, i.e. there exists a sequence of positive real numbers (
an) such that Sn/anconverges in law to $\mathcal {Y}$. Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.
LA - eng
KW - random walk; stable law; Lévy process; conditioning to stay positive; invariance principle
UR - http://eudml.org/doc/77960
ER -
References
top- L. Alili and R. A. Doney. Wiener-Hopf factorization revisited and some applications. Stoc. Stoc. Rep. 66 (1999) 87–102. Zbl0928.60067MR1687803
- J. Bertoin. Lévy Processes. Cambridge University Press, 1996. Zbl0861.60003MR1406564
- J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994) 2152–2167. Zbl0834.60079MR1331218
- N. H. Bingham, C. H. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, 1989. Zbl0667.26003MR1015093
- P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0944.60003MR1700749
- E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480–485. Zbl0336.60024MR415702
- A. Bryn-Jones and R. A. Doney. A functional central limit theorem for random walks conditional to stay non-negative. J. London Math. Soc. (2) 74 (2006) 244–258. Zbl1120.60047MR2254563
- F. Caravenna. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 (2005) 508–530. Zbl1080.60045MR2197112
- F. Caravenna, G. Giacomin and L. Zambotti. Sharp asymptotic behavior for wetting models in (1+1)-dimension. Elect. J. Probab. 11 (2006) 345–362. Zbl1112.60068MR2217821
- J.-D. Deuschel, G. Giacomin and L. Zambotti. Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 (2005) 471–500. Zbl1084.60060MR2198199
- L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39–54. Zbl0879.60072MR1419491
- L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377–403. Zbl0882.60074MR1465814
- C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres XII–XVI. Théorie du potentiel associée à une résolvante. Théorie des processus de Markov, 2nd edition, 1417. Hermann, Paris, 1987. Zbl0624.60084MR898005
- R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351–360. Zbl0573.60063MR803677
- R. A. Doney and P. E. Greenwood. On the joint distribution of ladder variables of random walks. Probab. Theory Related Fields 94 (1993) 457–472. Zbl0791.60058MR1201554
- R. A. Doney. Spitzer’s condition and ladder variables in random walks. Probab. Theory Related Fields 101 (1995) 577–580. Zbl0818.60060MR1327226
- R. A. Doney. One-sided local large deviation and renewal theorem in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451–465. Zbl0883.60022MR1440141
- T. Duquesne and J. F. Le Gall. Lévy processes and spatial branching processes. Astérisque 281 (2002). Zbl1037.60074MR1954248
- S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. Zbl0592.60049MR838085
- W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley, New York, 1971. Zbl0219.60003MR270403
- A. Garsia and J. Lamperti. A discrete renewal theorem with infinite mean. Comm. Math. Helv. 37 (1963) 221–234. Zbl0114.08803MR148121
- G. Giacomin. Random Polymer Models. Imperial College Press, World Scientific, 2007. Zbl1125.82001MR2380992
- P. E. Greenwood, E. Omey and J. L. Teugels. Harmonic renewal measures and bivariate domains of attraction in fluctuation theory. Z. Wahrsch. Verw. Gebiete 61 (1982) 527–539. Zbl0493.60072MR682578
- D. L. Iglehart. Functional central limit theorems for random walks conditioned to stay positive. Ann. Probab. 2 (1974) 608–619. Zbl0299.60053MR362499
- A. Lambert. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002) 42–70. Zbl1020.60074MR1883717
- T. L. Liggett. An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18 (1968) 559–570. Zbl0181.20502MR238373
- A. V. Skorohod. Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 (1957) 138–171. Zbl0097.13001MR94842
- Y. Velenik. Localization and Delocalization of Random Interfaces. Probab. Surv. 3 (2006) 112–169. Zbl1189.82051MR2216964
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.