Invariance principles for random walks conditioned to stay positive

Francesco Caravenna; Loïc Chaumont

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 1, page 170-190
  • ISSN: 0246-0203

Abstract

top
Let {Snbe a random walk in the domain of attraction of a stable law 𝒴 , i.e. there exists a sequence of positive real numbers ( an) such that Sn/anconverges in law to 𝒴 . Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.

How to cite

top

Caravenna, Francesco, and Chaumont, Loïc. "Invariance principles for random walks conditioned to stay positive." Annales de l'I.H.P. Probabilités et statistiques 44.1 (2008): 170-190. <http://eudml.org/doc/77960>.

@article{Caravenna2008,
abstract = {Let \{Snbe a random walk in the domain of attraction of a stable law $\mathcal \{Y\}$, i.e. there exists a sequence of positive real numbers ( an) such that Sn/anconverges in law to $\mathcal \{Y\}$. Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.},
author = {Caravenna, Francesco, Chaumont, Loïc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; stable law; Lévy process; conditioning to stay positive; invariance principle},
language = {eng},
number = {1},
pages = {170-190},
publisher = {Gauthier-Villars},
title = {Invariance principles for random walks conditioned to stay positive},
url = {http://eudml.org/doc/77960},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Caravenna, Francesco
AU - Chaumont, Loïc
TI - Invariance principles for random walks conditioned to stay positive
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 1
SP - 170
EP - 190
AB - Let {Snbe a random walk in the domain of attraction of a stable law $\mathcal {Y}$, i.e. there exists a sequence of positive real numbers ( an) such that Sn/anconverges in law to $\mathcal {Y}$. Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.
LA - eng
KW - random walk; stable law; Lévy process; conditioning to stay positive; invariance principle
UR - http://eudml.org/doc/77960
ER -

References

top
  1. L. Alili and R. A. Doney. Wiener-Hopf factorization revisited and some applications. Stoc. Stoc. Rep. 66 (1999) 87–102. Zbl0928.60067MR1687803
  2. J. Bertoin. Lévy Processes. Cambridge University Press, 1996. Zbl0861.60003MR1406564
  3. J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994) 2152–2167. Zbl0834.60079MR1331218
  4. N. H. Bingham, C. H. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, 1989. Zbl0667.26003MR1015093
  5. P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0944.60003MR1700749
  6. E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480–485. Zbl0336.60024MR415702
  7. A. Bryn-Jones and R. A. Doney. A functional central limit theorem for random walks conditional to stay non-negative. J. London Math. Soc. (2) 74 (2006) 244–258. Zbl1120.60047MR2254563
  8. F. Caravenna. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 (2005) 508–530. Zbl1080.60045MR2197112
  9. F. Caravenna, G. Giacomin and L. Zambotti. Sharp asymptotic behavior for wetting models in (1+1)-dimension. Elect. J. Probab. 11 (2006) 345–362. Zbl1112.60068MR2217821
  10. J.-D. Deuschel, G. Giacomin and L. Zambotti. Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 (2005) 471–500. Zbl1084.60060MR2198199
  11. L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39–54. Zbl0879.60072MR1419491
  12. L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377–403. Zbl0882.60074MR1465814
  13. C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres XII–XVI. Théorie du potentiel associée à une résolvante. Théorie des processus de Markov, 2nd edition, 1417. Hermann, Paris, 1987. Zbl0624.60084MR898005
  14. R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351–360. Zbl0573.60063MR803677
  15. R. A. Doney and P. E. Greenwood. On the joint distribution of ladder variables of random walks. Probab. Theory Related Fields 94 (1993) 457–472. Zbl0791.60058MR1201554
  16. R. A. Doney. Spitzer’s condition and ladder variables in random walks. Probab. Theory Related Fields 101 (1995) 577–580. Zbl0818.60060MR1327226
  17. R. A. Doney. One-sided local large deviation and renewal theorem in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451–465. Zbl0883.60022MR1440141
  18. T. Duquesne and J. F. Le Gall. Lévy processes and spatial branching processes. Astérisque 281 (2002). Zbl1037.60074MR1954248
  19. S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. Zbl0592.60049MR838085
  20. W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley, New York, 1971. Zbl0219.60003MR270403
  21. A. Garsia and J. Lamperti. A discrete renewal theorem with infinite mean. Comm. Math. Helv. 37 (1963) 221–234. Zbl0114.08803MR148121
  22. G. Giacomin. Random Polymer Models. Imperial College Press, World Scientific, 2007. Zbl1125.82001MR2380992
  23. P. E. Greenwood, E. Omey and J. L. Teugels. Harmonic renewal measures and bivariate domains of attraction in fluctuation theory. Z. Wahrsch. Verw. Gebiete 61 (1982) 527–539. Zbl0493.60072MR682578
  24. D. L. Iglehart. Functional central limit theorems for random walks conditioned to stay positive. Ann. Probab. 2 (1974) 608–619. Zbl0299.60053MR362499
  25. A. Lambert. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002) 42–70. Zbl1020.60074MR1883717
  26. T. L. Liggett. An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18 (1968) 559–570. Zbl0181.20502MR238373
  27. A. V. Skorohod. Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 (1957) 138–171. Zbl0097.13001MR94842
  28. Y. Velenik. Localization and Delocalization of Random Interfaces. Probab. Surv. 3 (2006) 112–169. Zbl1189.82051MR2216964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.