Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree

Chin-Huei Chang; Hsuan-Pei Lee

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 1, page 21-37
  • ISSN: 0391-173X

Abstract

top
The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for C k ¯ -closed forms at the critical degree, 0 k (Theorem 1.1). Part of Frenkel’s lemma in C k category is also proved.

How to cite

top

Chang, Chin-Huei, and Lee, Hsuan-Pei. "Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (2006): 21-37. <http://eudml.org/doc/241973>.

@article{Chang2006,
abstract = {The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for $C^k$$\{\bar\{\partial \}\}$-closed forms at the critical degree, $0\le k\le \infty $ (Theorem 1.1). Part of Frenkel’s lemma in $C^k$ category is also proved.},
author = {Chang, Chin-Huei, Lee, Hsuan-Pei},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {21-37},
publisher = {Scuola Normale Superiore, Pisa},
title = {Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree},
url = {http://eudml.org/doc/241973},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Chang, Chin-Huei
AU - Lee, Hsuan-Pei
TI - Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 1
SP - 21
EP - 37
AB - The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for $C^k$${\bar{\partial }}$-closed forms at the critical degree, $0\le k\le \infty $ (Theorem 1.1). Part of Frenkel’s lemma in $C^k$ category is also proved.
LA - eng
UR - http://eudml.org/doc/241973
ER -

References

top
  1. [1] C. H. Chang and H. P. Lee, Semi-global solution of ¯ b with L p ( 1 p ) bounds on strongly pseudoconvex real hypersurfaces in n ( n 3 ) , Publ. Mat. 43 (1999), 535–570. Zbl0954.32027MR1744621
  2. [2] C. H. Chang and H. P. Lee, Hartogs theorem for CR functions, Bull. Inst. Math. Acad. Sinica 32 (2004), 221–227. Zbl1072.32025MR2103960
  3. [3] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529–569. Zbl0334.32020MR422683
  4. [4] F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88. Zbl37.0444.01MR1511365JFM37.0444.01
  5. [5] R. Harvey and J. Polking, Fundamental solutions in complex analysis, I, II, Duke Math. J. 46 (1979), 253–340. Zbl0441.35043MR534054
  6. [6] G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59–130. Zbl0382.35038MR454067
  7. [7] L. Hörmander, “Notions of Convexity”, Progress in Math., Vol. 127, Birkhäuser, 1994. Zbl0835.32001MR1301332
  8. [8] S. G. Krantz, “Function Theory of Several Complex Variables”, 2ed. Wadsworth Books/Cole Mathematics Series, 1992. Zbl0471.32008MR1162310
  9. [9] R. Narasimhan, “Several Complex Variables”, Chicago Lecture Notes in Math., The University of Chicago Press, 1971. Zbl0223.32001MR342725
  10. [10] M. R. Range, “Holomorphic Functions and Integral Representations in Several Complex Variables”, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
  11. [11] J. P. Rosay, Some application of Cauchy-Fantappié forms to (local) problems in ¯ b , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 225–243. Zbl0633.32007MR876123
  12. [12] Y. T. Siu, “Techniques of Extension of Analytic Objects”, Lecture Notes in Pure and Applied Math., Vol. 8, Marcel Dekker, 1974. Zbl0294.32007MR361154
  13. [13] Y. T. Siu and G. Trautmann, “Gap-sheaves and Extension of Coherent Analytic Subsheaves”, Lecture Notes in Mathematics, Vol. 172, Springer-Verlag, 1971. Zbl0208.10403MR287033
  14. [14] S. M. Webster, On the local solution of the tangential Cauchy-Riemann equations, Nonlinear Anal. 6 (1989), 167–182. Zbl0679.32019MR995503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.