Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree
Chin-Huei Chang; Hsuan-Pei Lee
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 1, page 21-37
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topChang, Chin-Huei, and Lee, Hsuan-Pei. "Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (2006): 21-37. <http://eudml.org/doc/241973>.
@article{Chang2006,
abstract = {The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for $C^k$$\{\bar\{\partial \}\}$-closed forms at the critical degree, $0\le k\le \infty $ (Theorem 1.1). Part of Frenkel’s lemma in $C^k$ category is also proved.},
author = {Chang, Chin-Huei, Lee, Hsuan-Pei},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {21-37},
publisher = {Scuola Normale Superiore, Pisa},
title = {Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree},
url = {http://eudml.org/doc/241973},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Chang, Chin-Huei
AU - Lee, Hsuan-Pei
TI - Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 1
SP - 21
EP - 37
AB - The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for $C^k$${\bar{\partial }}$-closed forms at the critical degree, $0\le k\le \infty $ (Theorem 1.1). Part of Frenkel’s lemma in $C^k$ category is also proved.
LA - eng
UR - http://eudml.org/doc/241973
ER -
References
top- [1] C. H. Chang and H. P. Lee, Semi-global solution of with bounds on strongly pseudoconvex real hypersurfaces in , Publ. Mat. 43 (1999), 535–570. Zbl0954.32027MR1744621
- [2] C. H. Chang and H. P. Lee, Hartogs theorem for CR functions, Bull. Inst. Math. Acad. Sinica 32 (2004), 221–227. Zbl1072.32025MR2103960
- [3] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529–569. Zbl0334.32020MR422683
- [4] F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88. Zbl37.0444.01MR1511365JFM37.0444.01
- [5] R. Harvey and J. Polking, Fundamental solutions in complex analysis, I, II, Duke Math. J. 46 (1979), 253–340. Zbl0441.35043MR534054
- [6] G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59–130. Zbl0382.35038MR454067
- [7] L. Hörmander, “Notions of Convexity”, Progress in Math., Vol. 127, Birkhäuser, 1994. Zbl0835.32001MR1301332
- [8] S. G. Krantz, “Function Theory of Several Complex Variables”, 2ed. Wadsworth Books/Cole Mathematics Series, 1992. Zbl0471.32008MR1162310
- [9] R. Narasimhan, “Several Complex Variables”, Chicago Lecture Notes in Math., The University of Chicago Press, 1971. Zbl0223.32001MR342725
- [10] M. R. Range, “Holomorphic Functions and Integral Representations in Several Complex Variables”, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
- [11] J. P. Rosay, Some application of Cauchy-Fantappié forms to (local) problems in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 225–243. Zbl0633.32007MR876123
- [12] Y. T. Siu, “Techniques of Extension of Analytic Objects”, Lecture Notes in Pure and Applied Math., Vol. 8, Marcel Dekker, 1974. Zbl0294.32007MR361154
- [13] Y. T. Siu and G. Trautmann, “Gap-sheaves and Extension of Coherent Analytic Subsheaves”, Lecture Notes in Mathematics, Vol. 172, Springer-Verlag, 1971. Zbl0208.10403MR287033
- [14] S. M. Webster, On the local solution of the tangential Cauchy-Riemann equations, Nonlinear Anal. 6 (1989), 167–182. Zbl0679.32019MR995503
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.