Some applications of Cauchy-Fantappie forms to (local) problems on ¯ b

Jean-Pierre Rosay

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 2, page 225-243
  • ISSN: 0391-173X

How to cite

top

Rosay, Jean-Pierre. "Some applications of Cauchy-Fantappie forms to (local) problems on $\bar{\partial }_b$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.2 (1986): 225-243. <http://eudml.org/doc/83978>.

@article{Rosay1986,
author = {Rosay, Jean-Pierre},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-problem; pseudo-convexity; integral representation},
language = {eng},
number = {2},
pages = {225-243},
publisher = {Scuola normale superiore},
title = {Some applications of Cauchy-Fantappie forms to (local) problems on $\bar\{\partial \}_b$},
url = {http://eudml.org/doc/83978},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Rosay, Jean-Pierre
TI - Some applications of Cauchy-Fantappie forms to (local) problems on $\bar{\partial }_b$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 2
SP - 225
EP - 243
LA - eng
KW - -problem; pseudo-convexity; integral representation
UR - http://eudml.org/doc/83978
ER -

References

top
  1. [1] Aizenberg-Dautov, Differentials forms orthogonal to holomorphic functions and their properties, Transl. of Math. Monographs AMS, vol. 56 (1983). Zbl0511.32002
  2. [2] Andreotti-Hill, E.E.Levi convexity and the H. Lewy problem. Part I Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1972), pp. 325-363. Zbl0256.32007MR460725
  3. [3] Andreotti-Hill, E. E. Levi convexity and the Hans Lewy problem, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1972), pp. 747-806. Zbl0283.32013MR477150
  4. [4] M. Derridj, Le problème de Cauchy pour ∂ et application, to appear in Ann. Sci. Ecole Norm. Sup. and Inégalités de Carleman et extension locale des functions holomorphes, Ann. Scuola Norm. Sup. Pisa, IV, Vol. IX, no 4 (1981), pp. 645-669. Zbl0548.32013
  5. [5] Fischer-Lieb, Locale kerne und beschrankte, Losungen für den ∂-Operator auf q-convexen Gebeiten, Math. Ann., 208 (1974), pp. 249-265. Zbl0277.35045
  6. [6] Folland-Kohn, The Neumann Problem for the Cauchy Riemann Complex, Princeton Univ. Press, 1972. Zbl0247.35093MR461588
  7. [7] Harvey-Polking, Fundamentals solutions in complex analysis, Part II. The induced Cauchy Riemann Operator, Duke Math. J. Vol. 46, no 2 (1979), pp. 301-340. Zbl0441.35044MR534055
  8. [8] G.M. Henkin, The Lewy equation and analysis on pseudo-convex manifolds, Russian Math. Surveys, 32:3 (1977), pp. 59-130. Zbl0382.35038MR454067
  9. [9] Hakim-Sibony, Spectre de A(Ω) pour des domaines faiblement pseudo-convexes réguliers, J. Funct. Anal., 37 (1980), pp. 127-135. Zbl0441.46044
  10. [10] L. Hörmander, An Introduction to complex analysis in several variables, Van NostrandPrinceton, NJ (1966). Zbl0138.06203MR203075
  11. [11] J.J. Kohn, Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), pp. 273-292, and Methods of PDE in complex analysis, Proceedings in Pure Math., 30 (1977), pp. 215-237. Zbl0276.35071
  12. [12] Kohn-Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., 81 (1965), pp. 451-472. Zbl0166.33802MR177135
  13. [13] J.P. Rosay, Equation de Lewy-résolubilité globale de l'équation ∂ bu = f sur la frontière de domaines faiblement pseudo-convexes de C2 on Cn, Duke Math. J., Vol. 49, no 1 (1982), pp. 121-127. Zbl0492.32018
  14. [14] N. Sibony, Un exemple. de domaine pseudo-convexe régulier ou l'équation ∂u = f n'admet pas de solution bornée pour f bornée, Inventiones Math., Vol. 62, no 2 (1980), pp. 235-242. Zbl0429.32026
  15. [15] E.L. Stout, Interpolation Manifolds, in « Recent developments in several complex variables » ed. J. FORNAESS, Princeton Univ. Press (1981). Zbl0486.32010MR627769
  16. [16] A. Bogges - M.C. Shaw, A kernel approach to the local solvability of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc., 289 (1985), pp. 643-658. Zbl0579.35062MR784007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.