Exponential functionals of brownian motion and class-one Whittaker functions
Fabrice Baudoin; Neil O’Connell
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1096-1120
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBaudoin, Fabrice, and O’Connell, Neil. "Exponential functionals of brownian motion and class-one Whittaker functions." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1096-1120. <http://eudml.org/doc/242110>.
@article{Baudoin2011,
abstract = {We consider exponential functionals of a brownian motion with drift in ℝn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on the law of its exponential functionals. In the case where the family of linear functionals is a set of simple roots, the Laplace transform of the joint law of the corresponding exponential functionals can be expressed in terms of a (class-one) Whittaker function associated with the corresponding root system. In this setting, we establish some basic properties of the corresponding diffusion processes.},
author = {Baudoin, Fabrice, O’Connell, Neil},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conditioned brownian motion; quantum Toda lattice; conditioned Brownian motion},
language = {eng},
number = {4},
pages = {1096-1120},
publisher = {Gauthier-Villars},
title = {Exponential functionals of brownian motion and class-one Whittaker functions},
url = {http://eudml.org/doc/242110},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Baudoin, Fabrice
AU - O’Connell, Neil
TI - Exponential functionals of brownian motion and class-one Whittaker functions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1096
EP - 1120
AB - We consider exponential functionals of a brownian motion with drift in ℝn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on the law of its exponential functionals. In the case where the family of linear functionals is a set of simple roots, the Laplace transform of the joint law of the corresponding exponential functionals can be expressed in terms of a (class-one) Whittaker function associated with the corresponding root system. In this setting, we establish some basic properties of the corresponding diffusion processes.
LA - eng
KW - conditioned brownian motion; quantum Toda lattice; conditioned Brownian motion
UR - http://eudml.org/doc/242110
ER -
References
top- [1] L. Alili, H. Matsumoto and T. Shiraishi. On a triplet of exponential Brownian functionals. In Séminaire de probabilités de Strasbourg, XXXV 396–415. Lecture Notes in Math. 1755. Springer, Berlin, 2001. Zbl0981.60080MR1837300
- [2] F. Baudoin. Further exponential generalization of Pitman’s 2M−X theorem. Electron. Comm. Probab. 7 (2002) 37–46 (electronic). Zbl1008.60088MR1887172
- [3] F. Baudoin. Conditioned stochastic differential equations: Theory, examples and applications to finance. Stochastic Process. Appl. 100 (2002) 109–145. Zbl1058.60040MR1919610
- [4] P. Biane, P. Bougerol and N. O’Connell. Littelmann paths and Brownian paths. Duke Math. J. 130 (2005) 127–167. Zbl1161.60330MR2176549
- [5] P. Bougerol and T. Jeulin. Paths in Weyl chambers and random matrices. Probab. Theory Related Fields 124 (2002) 517–543. Zbl1020.15024MR1942321
- [6] D. Bump. Automorphic Forms on GL(3, ℝ). Lecture Notes in Math. 1083. Springer, Berlin, 1984. Zbl0543.22005MR765698
- [7] D. Bump and J. Huntley. Unramified Whittaker functions for GL(3, ℝ). J. Anal. Math. 65 (1995) 19–44. Zbl0839.22016MR1335367
- [8] D. Dufresne. The integral of geometric Brownian motion. Adv. in Appl. Probab. 33 (2001) 223–241. Zbl0980.60103MR1825324
- [9] R. Ghomrasni. On distribution associated with the generalized Levy’s stochastic area formula. Studia Sci. Math. Hungar. 41 (2004) 93–100. Zbl1059.60049MR2082064
- [10] S. G. Gindikin and F. I. Karpelevich. The Plancherel measure for Riemannian symmetric spaces with non-positive curvature. Dokl. Akad. Nauk USSR 145 (1962) 252–255. Zbl0156.03201MR150239
- [11] A. Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In Topics in Singularity Theory 103–115. AMS Transl. Ser. 2 180. AMS, Providence, RI, 1997. Zbl0895.32006MR1767115
- [12] C. Grosche. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential. Ann. Phys. 187 (1988) 110–134. Zbl0652.58042MR969177
- [13] M. Hashizume. Whittaker functions on semisimple Lie groups. Hiroshima Math. J. 12 (1982) 259–293. Zbl0524.43005MR665496
- [14] N. Ikeda and H. Matsumoto. Brownian motion on the Hyperbolic plane and Selberg trace formula. J. Funct. Anal. 163 (1999) 63–110. Zbl0928.60063MR1682843
- [15] H. Jacquet. Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France 95 (1967) 243–309. Zbl0155.05901MR271275
- [16] S. Kharchev and D. Lebedev. Integral representations for the eigenfunctions of a quantum periodic Toda chain. Lett. Math. Phys. 50 (1999) 53–77. Zbl0970.37056MR1751619
- [17] B. Kostant. Quantisation and representation theory. In Representation Theory of Lie Groups, Proc. SRC/LMS Research Symposium, Oxford 1977287–316. LMS Lecture Notes 34. Cambridge Univ. Press, Cambridge, 1977. Zbl0474.58010
- [18] N. N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972. Zbl0271.33001MR350075
- [19] H. Matsumoto and M. Yor. A version of Pitman’s 2M−X theorem for geometric Brownian motions. C. R. Acad. Sci. Paris Sér. 1 328 (1999) 1067–1074. Zbl0936.60076MR1696208
- [20] H. Matsumoto and M. Yor. Exponential functionals of Brownian motion, I: Probability laws at a fixed time. Probab. Surv. 2 (2005) 312–347. Zbl1189.60150MR2203675
- [21] H. Matsumoto and M. Yor. A relationship between Brownian motions with opposite drifts. Osaka J. Math. 38 (2001) 383–398. Zbl0981.60078MR1833628
- [22] N. O’Connell. Directed polymers and the quantum Toda lattice. Ann. Probab. To appear, 2011. Available at arXiv:0910.0069.
- [23] N. O’Connell and M. Yor. Brownian analogues of Burke’s theorem. Stochastic Process. Appl. 96 (2001) 285–304. Zbl1058.60078MR1865759
- [24] N. O’Connell and M. Yor. A representation for non-colliding random walks. Electron. Comm. Probab. 7 (2002) 1–12. Zbl1037.15019MR1887169
- [25] J. W. Pitman. One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. in Appl. Probab. 7 (1975) 511–526. Zbl0332.60055MR375485
- [26] L. C. G. Rogers and J. Pitman. Markov functions. Ann. Probab. 9 (1981) 573–582. Zbl0466.60070MR624684
- [27] M. Semenov-Tian-Shansky. Quantisation of open Toda lattices. In Dynamical Systems VII: Integrable Systems, Nonholonomic Dynamical Systems 226–259. V. I. Arnol’d and S. P. Novikov (Eds). Encyclopaedia of Mathematical Sciences 16. Springer, Berlin, 1994. Zbl0795.00013MR1256257
- [28] E. Stade. Poincaré series for GL(3, ℝ)-Whittaker functions. Duke Math. J. 58 (1989) 695–729. Zbl0699.10041MR1016442
- [29] A. Vinogradov and L. Takhtadzhyan. Theory of Eisenstein series for the group SL(3, ℝ) and its application to a binary problem. J. Soviet Math. 18 (1982) 293–324. Zbl0476.10024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.