Testing stationary processes for independence
Gusztáv Morvai; Benjamin Weiss
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1219-1225
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMorvai, Gusztáv, and Weiss, Benjamin. "Testing stationary processes for independence." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1219-1225. <http://eudml.org/doc/242237>.
@article{Morvai2011,
abstract = {Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {independent processes; hypothesis testing},
language = {eng},
number = {4},
pages = {1219-1225},
publisher = {Gauthier-Villars},
title = {Testing stationary processes for independence},
url = {http://eudml.org/doc/242237},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Testing stationary processes for independence
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1219
EP - 1225
AB - Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.
LA - eng
KW - independent processes; hypothesis testing
UR - http://eudml.org/doc/242237
ER -
References
top- [1] D. H. Bailey. Sequential schemes for classifying and predicting ergodic processes. Ph.D. thesis, Stanford Univ., 1976. MR2626644
- [2] A. Berger. On uniformly consistent tests. Ann. Math. Statist. 22 (1951) 289–293. Zbl0042.38003MR42653
- [3] A. Dembo and Y. Peres. A topological criterion for hypothesis testing. Ann. Statist. 22 (1994) 106–117. Zbl0818.62010MR1272078
- [4] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
- [5] W. Hoeffding and J. Wolfowitz. Distinguishability of sets of distributions. Ann. Math. Statist. 29 (1958) 700–718. Zbl0135.19404MR95555
- [6] Ch. Kraft. Some conditions for consistency and uniform consistency of statistical procedures. Univ. California Publ. Statist. 2 (1955) 125–141. Zbl0066.12202MR73896
- [7] G. Morvai and B. Weiss. Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005) 1496–1497. Zbl1309.62144MR2241507
- [8] G. Morvai and B. Weiss. On classifying processes. Bernoulli 11 (2005) 523–532. Zbl1073.62077MR2146893
- [9] G. Morvai and B. Weiss. Estimating the lengths of memory words. IEEE Transactions on Information Theory 54 (2008) 3804–3807. Zbl1329.60095MR2451043
- [10] A. Nobel. Hypothesis testing for families of ergodic processes. Bernoulli 12 (2006) 251–269. Zbl1099.62097MR2218555
- [11] D. Ornstein and B. Weiss. How sampling reveals a process. Ann. Probab. 18 (1990) 905–930. Zbl0709.60036MR1062052
- [12] B. Weiss. Some remarks on filtering and prediction of stationary processes. Israel J. Math. 149 (2005) 345–360. Zbl1085.60024MR2191220
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.