Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Adaptive tests of homogeneity for a Poisson process

M. Fromont, B. Laurent, P. Reynaud-Bouret (2011)

Annales de l'I.H.P. Probabilités et statistiques

We propose to test the homogeneity of a Poisson process observed on a finite interval. In this framework, we first provide lower bounds for the uniform separation rates in -norm over classical Besov bodies and weak Besov bodies. Surprisingly, the obtained lower bounds over weak Besov bodies coincide with the minimax estimation rates over such classes. Then we construct non-asymptotic and non-parametric testing procedures that are adaptive in the sense that they achieve, up to a possible logarithmic...

Applications of regime-switching models based on aggregation operators

Jozef Komorník, Magda Komorníková (2007)

Kybernetika

A synthesis of recent development of regime-switching models based on aggregation operators is presented. It comprises procedures for model specification and identification, parameter estimation and model adequacy testing. Constructions of models for real life data from hydrology and finance are presented.

Contiguity and LAN-property of sequences of Poisson processes

Friedrich Liese, Udo Lorz (1999)

Kybernetika

Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures.

Detection of transient change in mean – a linear behavior inside epidemic interval

Daniela Jarušková (2011)

Kybernetika

A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure.

Goodness-of-fit tests in long-range dependent processes under fixed alternatives

Holger Dette, Kemal Sen (2013)

ESAIM: Probability and Statistics

In a recent paper Fay and Philippe [ESAIM: PS 6 (2002) 239–258] proposed a goodness-of-fit test for long-range dependent processes which uses the logarithmic contrast as information measure. These authors established asymptotic normality under the null hypothesis and local alternatives. In the present note we extend these results and show that the corresponding test statistic is also normally distributed under fixed alternatives.

Investigation of periodicity for dependent observations

Tomáš Cipra (1984)

Aplikace matematiky

It is proved that Hannan's procedure for statistical test of periodicity in the case of time series with dependent observations can be combined with Siegel's improvement of the classical Fischer's test of periodicity. Simulations performed in the paper show that this combination can increase the power of Hannan's test when at least two periodicities are present in the time series with dependent observations.

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model

Jean-Michel Loubes, Davy Paindaveine (2011)

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model*

Jean-Michel Loubes, Davy Paindaveine (2012)

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Local superefficiency of data-driven projection density estimators in continuous time.

Denis Bosq, Delphine Blanke (2004)

SORT

We construct a data-driven projection density estimator for continuous time processes. This estimator reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst. Results apply to Rd-valued processes and to N-valued processes. In the particular case where square-integrable local time does exist, it is shown that our estimator is strictly better than the local...

Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime

Antoine Chambaz, Catherine Matias (2009)

ESAIM: Probability and Statistics

This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number k of states of the hidden Markov chain and the memory m of the conditional Markov chain. We study the properties of penalized maximum likelihood estimators for the unknown order (k, m) of an observed MCMR process, relying on information theoretic arguments. The novelty of our work relies in the joint...

On cumulative process model and its statistical analysis

Petr Volf (2000)

Kybernetika

The notion of the counting process is recalled and the idea of the ‘cumulative’ process is presented. While the counting process describes the sequence of events, by the cumulative process we understand a stochastic process which cumulates random increments at random moments. It is described by an intensity of the random (counting) process of these moments and by a distribution of increments. We derive the martingale – compensator decomposition of the process and then we study the estimator of the...

On multiple periodic autoregression

Jiří Anděl (1987)

Aplikace matematiky

The model of periodic autoregression is generalized to the multivariate case. The autoregressive matrices are periodic functions of time. The mean value of the process can be a non-vanishing periodic sequence of vectors. Estimators of parameters and tests of statistical hypotheses are based on the Bayes approach. Two main versions of the model are investigated, one with constant variance matrices and the other with periodic variance matrices of the innovation process.

Currently displaying 1 – 20 of 39

Page 1 Next