The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable
Kunihiko Kajitani; Yasuo Yuzawa
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 4, page 465-482
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKajitani, Kunihiko, and Yuzawa, Yasuo. "The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 465-482. <http://eudml.org/doc/242445>.
@article{Kajitani2006,
abstract = {We discuss the local existence and uniqueness of solutions of certain nonstrictly hyperbolic systems, with Hölder continuous coefficients with respect to time variable. We reduce the nonstrictly hyperbolic systems to the parabolic ones and by use of the Tanabe-Sobolevski’s method and the Banach scale method we construct a semi-group which gives a representation of the solution to the Cauchy problem.},
author = {Kajitani, Kunihiko, Yuzawa, Yasuo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {465-482},
publisher = {Scuola Normale Superiore, Pisa},
title = {The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable},
url = {http://eudml.org/doc/242445},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Kajitani, Kunihiko
AU - Yuzawa, Yasuo
TI - The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 465
EP - 482
AB - We discuss the local existence and uniqueness of solutions of certain nonstrictly hyperbolic systems, with Hölder continuous coefficients with respect to time variable. We reduce the nonstrictly hyperbolic systems to the parabolic ones and by use of the Tanabe-Sobolevski’s method and the Banach scale method we construct a semi-group which gives a representation of the solution to the Cauchy problem.
LA - eng
UR - http://eudml.org/doc/242445
ER -
References
top- [1] M. D. Bronshtein, Cauchy problem for hyperbolic operators with variable multiple characteristics (Russian), Trudy Moscow Math. 41 (1980), 83–99. Zbl0468.35062MR611140
- [2] F. Colombini, E. Jannelli and S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 291–312. Zbl0543.35056MR728438
- [3] P. D’Ancona, T. Kinoshita and S. Spagnolo, Weakly hyperbolic systems with Hölder continuous coefficients, J. Differential Equations 203 (2004), 64–81. Zbl1068.35065MR2070386
- [4] K. Kajitani, Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J. 23-3 (1983), 599–616. Zbl0544.35063MR721386
- [5] P. D’Ancona, T. Kinoshita and S. Spagnolo, Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto. Univ. 12 (1983), 434–460. Zbl0544.35063
- [6] P. D’Ancona, T. Kinoshita and S. Spagnolo, The Cauchy Problem for Nonlinear Hyperbolic Systems, Bull. Sci. Math. 110 (1986), 3–48. Zbl0657.35082
- [7] P. D’Ancona, T. Kinoshita and S. Spagnolo, Wellposedness in Gevrey class of the Cauchy problem for hyperbolic operators, Bull. Sc. Math. 111 (1987), 415–438. Zbl0653.35051
- [8] T. Nishitani, Sur les équations hyperboliques à coefficients hölderients en et de classes de Gevrey en , Bull. Sci. Math. 107 (1983), 113–138. Zbl0536.35042MR704720
- [9] Y. Ohya and S. Tarama, Le Problème de Cauchy à caractéristiques multiples dans la classe de Gevrey - coefficients hölderiens en t -, In: “Hyperbolic Equations and Related Topics”, Proc. Taniguchi Internat. Symp. (1984), 273–302. Zbl0665.35045
- [10] H. Tanabe, “Equations of Evolution”, translated from the Japanese by N. Mugibayashi and H. Haneda. Monographs and Studies in Mathematics, Vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. Zbl0417.35003MR533824
- [11] Y. Yuzawa, The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to time, J. Differential Equations 219 (2005), 363–374. Zbl1087.35068MR2183264
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.