Uniqueness and approximate computation of optimal incomplete transportation plans
P. C. Álvarez-Esteban; E. del Barrio; J. A. Cuesta-Albertos; C. Matrán
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 358-375
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topÁlvarez-Esteban, P. C., et al. "Uniqueness and approximate computation of optimal incomplete transportation plans." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 358-375. <http://eudml.org/doc/242550>.
@article{Álvarez2011,
abstract = {For α∈(0, 1) an α-trimming, P∗, of a probability P is a new probability obtained by re-weighting the probability of any Borel set, B, according to a positive weight function, f≤1/(1−α), in the way P∗(B)=∫Bf(x)P(dx). If P, Q are probability measures on euclidean space, we consider the problem of obtaining the best L2-Wasserstein approximation between: (a) a fixed probability and trimmed versions of the other; (b) trimmed versions of both probabilities. These best trimmed approximations naturally lead to a new formulation of the mass transportation problem, where a part of the mass need not be transported. We explore the connections between this problem and the similarity of probability measures. As a remarkable result we obtain the uniqueness of the optimal solutions. These optimal incomplete transportation plans are not easily computable, but we provide theoretical support for Monte-Carlo approximations. Finally, we give a CLT for empirical versions of the trimmed distances and discuss some statistical applications.},
author = {Álvarez-Esteban, P. C., del Barrio, E., Cuesta-Albertos, J. A., Matrán, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {incomplete mass transportation problem; multivariate distributions; optimal transportation plan; similarity; trimming; uniqueness; trimmed probability; clt; CLT},
language = {eng},
number = {2},
pages = {358-375},
publisher = {Gauthier-Villars},
title = {Uniqueness and approximate computation of optimal incomplete transportation plans},
url = {http://eudml.org/doc/242550},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Álvarez-Esteban, P. C.
AU - del Barrio, E.
AU - Cuesta-Albertos, J. A.
AU - Matrán, C.
TI - Uniqueness and approximate computation of optimal incomplete transportation plans
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 358
EP - 375
AB - For α∈(0, 1) an α-trimming, P∗, of a probability P is a new probability obtained by re-weighting the probability of any Borel set, B, according to a positive weight function, f≤1/(1−α), in the way P∗(B)=∫Bf(x)P(dx). If P, Q are probability measures on euclidean space, we consider the problem of obtaining the best L2-Wasserstein approximation between: (a) a fixed probability and trimmed versions of the other; (b) trimmed versions of both probabilities. These best trimmed approximations naturally lead to a new formulation of the mass transportation problem, where a part of the mass need not be transported. We explore the connections between this problem and the similarity of probability measures. As a remarkable result we obtain the uniqueness of the optimal solutions. These optimal incomplete transportation plans are not easily computable, but we provide theoretical support for Monte-Carlo approximations. Finally, we give a CLT for empirical versions of the trimmed distances and discuss some statistical applications.
LA - eng
KW - incomplete mass transportation problem; multivariate distributions; optimal transportation plan; similarity; trimming; uniqueness; trimmed probability; clt; CLT
UR - http://eudml.org/doc/242550
ER -
References
top- [1] P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos and C. Matrán. Trimmed comparison of distributions. J. Amer. Statist. Assoc. 103 (2008) 697–704. Zbl05564523MR2435470
- [2] L. Ambrosio. Lecture Notes on Optimal Transport Problems, Mathematical Aspects of Evolving Interfaces. Lecture Notes in Math. 1812. Springer, Berlin/New York, 2003. Zbl1047.35001MR2011032
- [3] P. J. Bickel and D. A. Freedman. Some asymptotic theory for the bootstrap. Ann. Statist. 9 (1981) 1196–1217. Zbl0449.62034MR630103
- [4] Y. Brenier. Polar decomposition and increasing rearrangement of vector fields. C. R. Acad. Sci. Paris Ser. I Math. 305 (1987) 805–808. Zbl0652.26017MR923203
- [5] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417. Zbl0738.46011MR1100809
- [6] L. A. Caffarelli, M. Feldman and R. J. McCann. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2002) 1–26. Zbl1053.49032MR1862796
- [7] L. A. Caffarelli and R. J. McCann. Free boundaries in optimal transport and Monge–Ampére obstacle problems. Ann. of Math. (2006), to appear. Zbl1196.35231
- [8] I. J. Cascos and M. López-Díaz. Integral trimmed regions. J. Multivariate Anal. 96 (2005) 404–424. Zbl1122.62037MR2204986
- [9] I. J. Cascos and M. López-Díaz. Consistency of the α-trimming of a probability. Applications to central regions. Bernoulli 14 (2008) 580–592. Zbl1158.60338MR2544103
- [10] M. Csörgő and L. Horváth. Weighted Approximations in Probability and Statistics. Wiley, New York, 1993. Zbl0770.60038MR1215046
- [11] J. A. Cuesta-Albertos and C. Matrán. Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17 (1989) 1264–1276. Zbl0688.60011MR1009457
- [12] J. A. Cuesta-Albertos, C. Matrán and A. J. Tuero. Optimal transportation plans and convergence in distribution. J. Multivariate Anal. 60 (1997) 72–83. Zbl0894.60012MR1441460
- [13] J. A. Cuesta-Albertos, C. Matrán and A. J. Tuero. On the monotonicity of optimal transportation plans. J. Math. Anal. Appl. 215 (1997) 86–94. Zbl0892.60020MR1478852
- [14] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [15] M. Feldman and R. J. McCann. Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. 15 (2002) 81–113. Zbl1003.49031MR1920716
- [16] A. J. Figalli. The optimal partial transport problem. Arch. Rational Mech. Anal. 195 (2010), 533–560. Zbl1245.49059MR2592287
- [17] W. Gangbo and R. J. McCann. Shape recognition via Wasserstein distance. Quart. Appl. Math. 58 (2000) 705–737. Zbl1039.49038MR1788425
- [18] A. Gordaliza. Best approximations to random variables based on trimming procedures. J. Approx. Theory 64 (1991) 162–180. Zbl0745.41030MR1091467
- [19] R. J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323. Zbl0873.28009MR1369395
- [20] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems 2. Springer, New York, 1998. Zbl0990.60500
- [21] L. Rüschendorf and S. T. Rachev. A characterization of random variables with minimum L2-distance. J. Multivariate Anal. 32 (1990) 48–54. Zbl0688.62034MR1035606
- [22] A. Tuero. On the stochastic convergence of representations based on Wasserstein metrics. Ann. Probab. 21 (1993) 72–85. Zbl0770.60012MR1207216
- [23] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer, New York, 1996. Zbl0862.60002MR1385671
- [24] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI, 2003. Zbl1106.90001MR1964483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.