The triangle and the open triangle

Gady Kozma

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 75-79
  • ISSN: 0246-0203

Abstract

top
We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.

How to cite

top

Kozma, Gady. "The triangle and the open triangle." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 75-79. <http://eudml.org/doc/242716>.

@article{Kozma2011,
abstract = {We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.},
author = {Kozma, Gady},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; Cayley graph; mean-field; triangle condition; operator theory; spectral theory},
language = {eng},
number = {1},
pages = {75-79},
publisher = {Gauthier-Villars},
title = {The triangle and the open triangle},
url = {http://eudml.org/doc/242716},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Kozma, Gady
TI - The triangle and the open triangle
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 75
EP - 79
AB - We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.
LA - eng
KW - percolation; Cayley graph; mean-field; triangle condition; operator theory; spectral theory
UR - http://eudml.org/doc/242716
ER -

References

top
  1. [1] M. Aizenman and C. M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984) 107–143. Zbl0586.60096MR762034
  2. [2] D. J. Barsky and M. Aizenman. Percolation critical exponents under the triangle condition. Ann. Probab. 19 (1991) 1520–1536. Zbl0747.60093MR1127713
  3. [3] B. Bollobás and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. Zbl1118.60001MR2283880
  4. [4] Y. Eidelman, V. Milman and A. Tsolomitis. Functional Analysis. An Introduction. Graduate Studies in Mathematics 66. Amer. Math. Soc., Providence, RI, 2004. Zbl1077.46001MR2067694
  5. [5] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer-Verlag, Berlin, 1999. Zbl0926.60004MR1707339
  6. [6] T. Hara, R. van der Hofstad and G. Slade. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (2003) 349–408. Zbl1044.82006MR1959796
  7. [7] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990) 333–391. Zbl0698.60100MR1043524
  8. [8] W. Hebisch and L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 (1993) 673–709. Zbl0776.60086MR1217561
  9. [9] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Statist. Phys. 132 (2008) 1001–1049. Zbl1152.82007MR2430773
  10. [10] G. Kozma. Percolation on a product of two trees. In preparation. Zbl1243.60078
  11. [11] G. Kozma and A. Nachmias. The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009) 635–654. Zbl1180.82094
  12. [12] B. G. Nguyen. Gap exponents for percolation processes with triangle condition. J. Statist. Phys. 49 (1987) 235–243. Zbl0962.82521MR923855
  13. [13] R. H. Schonmann. Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math. Phys. 219 (2001) 271–322. Zbl1038.82037MR1833805
  14. [14] R. H. Schonmann. Mean-field criticality for percolation on planar non-amenable graphs. Comm. Math. Phys. 225 (2002) 453–463. Zbl0990.82027MR1888869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.