The triangle and the open triangle
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 75-79
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKozma, Gady. "The triangle and the open triangle." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 75-79. <http://eudml.org/doc/242716>.
@article{Kozma2011,
abstract = {We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.},
author = {Kozma, Gady},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; Cayley graph; mean-field; triangle condition; operator theory; spectral theory},
language = {eng},
number = {1},
pages = {75-79},
publisher = {Gauthier-Villars},
title = {The triangle and the open triangle},
url = {http://eudml.org/doc/242716},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Kozma, Gady
TI - The triangle and the open triangle
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 75
EP - 79
AB - We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.
LA - eng
KW - percolation; Cayley graph; mean-field; triangle condition; operator theory; spectral theory
UR - http://eudml.org/doc/242716
ER -
References
top- [1] M. Aizenman and C. M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984) 107–143. Zbl0586.60096MR762034
- [2] D. J. Barsky and M. Aizenman. Percolation critical exponents under the triangle condition. Ann. Probab. 19 (1991) 1520–1536. Zbl0747.60093MR1127713
- [3] B. Bollobás and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. Zbl1118.60001MR2283880
- [4] Y. Eidelman, V. Milman and A. Tsolomitis. Functional Analysis. An Introduction. Graduate Studies in Mathematics 66. Amer. Math. Soc., Providence, RI, 2004. Zbl1077.46001MR2067694
- [5] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer-Verlag, Berlin, 1999. Zbl0926.60004MR1707339
- [6] T. Hara, R. van der Hofstad and G. Slade. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (2003) 349–408. Zbl1044.82006MR1959796
- [7] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990) 333–391. Zbl0698.60100MR1043524
- [8] W. Hebisch and L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 (1993) 673–709. Zbl0776.60086MR1217561
- [9] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Statist. Phys. 132 (2008) 1001–1049. Zbl1152.82007MR2430773
- [10] G. Kozma. Percolation on a product of two trees. In preparation. Zbl1243.60078
- [11] G. Kozma and A. Nachmias. The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009) 635–654. Zbl1180.82094
- [12] B. G. Nguyen. Gap exponents for percolation processes with triangle condition. J. Statist. Phys. 49 (1987) 235–243. Zbl0962.82521MR923855
- [13] R. H. Schonmann. Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math. Phys. 219 (2001) 271–322. Zbl1038.82037MR1833805
- [14] R. H. Schonmann. Mean-field criticality for percolation on planar non-amenable graphs. Comm. Math. Phys. 225 (2002) 453–463. Zbl0990.82027MR1888869
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.