Excursions of the integral of the brownian motion
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 869-887
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJacob, Emmanuel. "Excursions of the integral of the brownian motion." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 869-887. <http://eudml.org/doc/242758>.
@article{Jacob2010,
abstract = {The integrated brownian motion is sometimes known as the Langevin process. Lachal studied several excursion laws induced by the latter. Here we follow a different point of view developed by Pitman for general stationary processes. We first construct a stationary Langevin process and then determine explicitly its stationary excursion measure. This is then used to provide new descriptions of Itô’s excursion measure of the Langevin process reflected at a completely inelastic boundary, which has been introduced recently by Bertoin.},
author = {Jacob, Emmanuel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Langevin process; stationary process; excursion measure; time-reversal; h-transform; -transform},
language = {eng},
number = {3},
pages = {869-887},
publisher = {Gauthier-Villars},
title = {Excursions of the integral of the brownian motion},
url = {http://eudml.org/doc/242758},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Jacob, Emmanuel
TI - Excursions of the integral of the brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 869
EP - 887
AB - The integrated brownian motion is sometimes known as the Langevin process. Lachal studied several excursion laws induced by the latter. Here we follow a different point of view developed by Pitman for general stationary processes. We first construct a stationary Langevin process and then determine explicitly its stationary excursion measure. This is then used to provide new descriptions of Itô’s excursion measure of the Langevin process reflected at a completely inelastic boundary, which has been introduced recently by Bertoin.
LA - eng
KW - Langevin process; stationary process; excursion measure; time-reversal; h-transform; -transform
UR - http://eudml.org/doc/242758
ER -
References
top- [1] J. Azéma. Théorie générale des processus et retournement du temps. Ann. Sci. École Norm. Sup. (4) 6 (1973) 459–519. Zbl0303.60061MR365725
- [2] J. Bertoin. Reflecting a Langevin process at an absorbing boundary. Ann. Probab. 35 (2007) 2021–2037. Zbl1132.60057MR2353380
- [3] J. Bertoin. A second order SDE for the Langevin process reflected at a completely inelastic boundary. J. Eur. Math. Soc. (JEMS) 10 (2008) 625–639. Zbl1169.60009MR2421156
- [4] R. K. Getoor. Excursions of a Markov process. Ann. Probab. 7 (1979) 244–266. Zbl0399.60069MR525052
- [5] J. P. Gor’kov. A formula for the solution of a certain boundary value problem for the stationary equation of Brownian motion. Dokl. Akad. Nauk SSSR 223 (1975) 525–528. Zbl0324.35013MR386033
- [6] A. Lachal. Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. H. Poincaré Probab. Statist. 27 (1991) 385–405. Zbl0747.60075MR1131839
- [7] A. Lachal. Application de la théorie des excursions à l’intégrale du mouvement brownien. In Séminaire de Probabilités XXXVII 109–195. Lecture Notes in Math. 1832. Springer, Berlin, 2003. Zbl1045.60084MR2053045
- [8] M. Lefebvre. First-passage densities of a two-dimensional process. SIAM J. Appl. Math. 49 (1989) 1514–1523. Zbl0681.60084MR1015076
- [9] B. Maury. Direct simulation of aggregation phenomena. Commun. Math. Sci. 2 (2004) 1–11. Zbl1086.76072MR2119870
- [10] H. P. McKean Jr.A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227–235. Zbl0119.34701MR156389
- [11] J. Pitman. Stationary excursions. In Séminaire de Probabilités, XXI 289–302. Lecture Notes in Math. 1247. Springer, Berlin, 1987. Zbl0619.60040MR941992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.