Loading [MathJax]/extensions/MathZoom.js
The aim of this note is to give a straightforward proof of a general version of the Ciesielski–Taylor identity for positive self-similar Markov processes of the spectrally negative type which umbrellas all previously known Ciesielski–Taylor identities within the latter class. The approach makes use of three fundamental features. Firstly, a new transformation which maps a subset of the family of Laplace exponents of spectrally negative Lévy processes into itself. Secondly, some classical features...
Given a two-dimensional fractional multiplicative process determined by two Hurst exponents and , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of by if and only if .
We study the asymptotic behavior of the empirical process when the underlying data are gaussian and exhibit seasonal long-memory. We prove that the limiting process can be quite different from the limit obtained in the case of regular long-memory. However, in both cases, the limiting process is degenerated. We apply our results to von–Mises functionals and -Statistics.
We study the asymptotic behavior of the empirical process when the
underlying data are Gaussian and exhibit seasonal
long-memory. We prove that the limiting process can be quite
different from the limit obtained in the case of regular
long-memory. However, in both cases, the limiting process is
degenerated. We apply our results to von–Mises functionals and
U-Statistics.
The stable fragmentation with index of self-similarity α∈[−1/2, 0) is derived by looking at the masses of the subtrees formed by discarding the parts of a (1+α)−1–stable continuum random tree below height t, for t≥0. We give a detailed limiting description of the distribution of such a fragmentation, (F(t), t≥0), as it approaches its time of extinction, ζ. In particular, we show that t1/αF((ζ−t)+) converges in distribution as t→0 to a non-trivial limit. In order to prove this, we go further and...
In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly affects...
We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly...
Let M be a random measure and L be an elliptic pseudo-differential operator on Rd. We study the solution of the stochastic problem LX = M, X(O) = O when some homogeneity and integrability conditions are assumed. If M is a Gaussian measure the process X belongs to the class of Elliptic Gaussian Processes which has already been studied. Here the law of M is not necessarily Gaussian. We characterize the solutions X which are self-similar and with stationary increments in terms of the driving mcasure...
Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ
x and μ(x)=μ or μ(x)=μ
x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...
The integrated brownian motion is sometimes known as the Langevin process. Lachal studied several excursion laws induced by the latter. Here we follow a different point of view developed by Pitman for general stationary processes. We first construct a stationary Langevin process and then determine explicitly its stationary excursion measure. This is then used to provide new descriptions of Itô’s excursion measure of the Langevin process reflected at a completely inelastic boundary, which has been...
Currently displaying 1 –
20 of
73