An integral test for the transience of a brownian path with limited local time
Itai Benjamini; Nathanaël Berestycki
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 539-558
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBenjamini, Itai, and Berestycki, Nathanaël. "An integral test for the transience of a brownian path with limited local time." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 539-558. <http://eudml.org/doc/242832>.
@article{Benjamini2011,
abstract = {We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems.},
author = {Benjamini, Itai, Berestycki, Nathanaël},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {brownian motion; conditioning; local time; entropic repulsion; integral test; transience; recurrence; Brownian motion},
language = {eng},
number = {2},
pages = {539-558},
publisher = {Gauthier-Villars},
title = {An integral test for the transience of a brownian path with limited local time},
url = {http://eudml.org/doc/242832},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Benjamini, Itai
AU - Berestycki, Nathanaël
TI - An integral test for the transience of a brownian path with limited local time
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 539
EP - 558
AB - We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems.
LA - eng
KW - brownian motion; conditioning; local time; entropic repulsion; integral test; transience; recurrence; Brownian motion
UR - http://eudml.org/doc/242832
ER -
References
top- [1] M. Barlow and E. Perkins. Brownian motion at a slow point. Trans. Amer. Math. Soc. 296 (1986) 741–775. Zbl0602.60041MR846605
- [2] I. Benjamini and N. Berestycki. Random paths with bounded local time. J. Eur. Math. Soc. 12 (2010) 819–854. Zbl1202.60131MR2654081
- [3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [4] R. Durrett. Probability: Theory and Examples, 3rd edition. Duxbury Press, Belmont, CA, 2004. Zbl0709.60002MR2722836
- [5] W. Feller. An Introduction to Probability Theory and its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
- [6] R. van der Hofstad and W. König. A survey of one-dimensional polymers. J. Stat. Phys. 103 (2001) 915–944. Zbl1126.82313MR1851362
- [7] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland–Kodansha, Amsterdam and Tokyo, 1981. Zbl0684.60040MR637061
- [8] J. Najnudel. Construction of an Edwards’ probability measure on C(ℝ+, ℝ). Ann. Probab. (2010). To appear. Preprint. Available at arXiv:0801.2751. Zbl1234.60038MR2683631
- [9] J. Pitman. The SDE solved by local times of a Brownian excursion or bridge derived from height profile of a random tree or forest. Ann. Probab. 27 (1999) 261–283. Zbl0954.60060MR1681110
- [10] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [11] L. C. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, Vol. 2, 2nd edition. Cambridge Univ. Press, Cambridge, 2000. Zbl0949.60003MR1780932
- [12] B. Roynette, P. Vallois and M. Yor. Some penalisations of the Wiener measure. Japan. J. Math. 1 (2006) 263–290. Zbl1160.60315MR2261065
- [13] B. Roynette and M. Yor. Penalising Brownian Paths: Rigorous Results and Meta-Theorems. Lecture Notes in Math. 1969. Springer, Berlin, 2009. Zbl1190.60002MR2504013
- [14] M. Yor. Local Times and Excursions for Brownian Motion: A Concise Introduction. Lecciones en Matematicas 1. Universidad Central de Venezuela, Caracas, 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.