Limits of determinantal processes near a tacnode
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 243-258
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBorodin, Alexei, and Duits, Maurice. "Limits of determinantal processes near a tacnode." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 243-258. <http://eudml.org/doc/243428>.
@article{Borodin2011,
abstract = {We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process.},
author = {Borodin, Alexei, Duits, Maurice},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {determinantal point processes; random growth; GUE minor process; pearcey process; Pearcey process},
language = {eng},
number = {1},
pages = {243-258},
publisher = {Gauthier-Villars},
title = {Limits of determinantal processes near a tacnode},
url = {http://eudml.org/doc/243428},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Borodin, Alexei
AU - Duits, Maurice
TI - Limits of determinantal processes near a tacnode
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 243
EP - 258
AB - We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process.
LA - eng
KW - determinantal point processes; random growth; GUE minor process; pearcey process; Pearcey process
UR - http://eudml.org/doc/243428
ER -
References
top- [1] M. Adler, P. Ferrari and P. V. Moerbeke. Airy processes with wanderers and new universality classes. Available at arXiv:0811.1863. Zbl1200.60069
- [2] A. Aptekarev, P. Bleher and A. Kuijlaars. Large n limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259 (2005) 367–389. Zbl1129.82014MR2172687
- [3] A. Borodin. Periodic Schur process and cylindric partitions. Duke Math. J. 10 (2007) 1119–1178. Zbl1131.22003MR2362241
- [4] A. Borodin. Determinantal point processes. Available at arXiv:0911.1153.
- [5] A. Borodin and P. Ferrari. Anisotropic growth of random surfaces in 2+1 dimensions. Available at arXiv:0804.3035. Zbl1303.82015
- [6] A. Borodin and G. Olshanski. Asymptotics of Plancherel-type random partitions. J. Algebra 313 (2007) 40–60. Zbl1117.60051MR2326137
- [7] A. Borodin, G. Olshanski and A. Okounkov. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000) 481–515. Zbl0938.05061MR1758751
- [8] E. Brezin and S. Hikami. Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57 (1998) 7176–7185. MR1618958
- [9] E. Brezin and S. Hikami. Level spacing of random matrices in an external source. Phys. Rev. E (3) 58 (1998) 4140–4149. MR1662382
- [10] P. Ferrari. The universal Airy1 and Airy2 processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices 321–332. Contemp. Math. 458. Amer. Math. Soc., Providence, RI, 2008. Zbl1145.82332MR2411915
- [11] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Determinantal processes and independence. Probab. Surv. 3 (2006) 206–229. Zbl1189.60101MR2216966
- [12] K. Johansson. Random matrices and determinantal processes. Available at arXiv:math-ph/0510038. MR2581882
- [13] K. Johansson and E. Nordenstam. Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342–1371. Zbl1127.60047MR2268547
- [14] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385–447. Zbl1189.60024MR2203677
- [15] R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98 (2003) 167–212. Zbl1055.60003MR2031202
- [16] A. Okounkov. Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223–252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Academic, Dordrecht, 2002. Zbl1017.05103MR2059364
- [17] A. Okounkov and N. Reshetikhin. The birth of a random matrix. Moscow Math. J. 6 (2006) 553–566. Zbl1130.15014MR2274865
- [18] A. Okounkov and N. Reshetikhin. Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 (2007) 571–609. Zbl1115.60011MR2276355
- [19] M. Prähofer and H. Spohn. Scale invariance of the PNG Droplet and the Airy Process. J. Stat. Phys. 108 (2002) 1071–1106. Zbl1025.82010MR1933446
- [20] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107–160; translation in: Russian Math. Surveys 55 (2000) 923–975. Zbl0991.60038MR1799012
- [21] A. Soshnikov. Determinantal random point fields. In Encyclopedia of Mathematical Physics 2 47–53. J. P. Françoise, G. L. Naber and T. S. Tsun (Eds.). Elsevier, Oxford, 2006. Zbl0991.60038
- [22] C. Tracy and H. Widom. The Pearcey process. Comm. Math. Phys 263 (2006) 381–400. Zbl1129.82031MR2207649
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.