On the global maximum of the solution to a stochastic heat equation with compact-support initial data
Mohammud Foondun; Davar Khoshnevisan
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 895-907
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topFoondun, Mohammud, and Khoshnevisan, Davar. "On the global maximum of the solution to a stochastic heat equation with compact-support initial data." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 895-907. <http://eudml.org/doc/243484>.
@article{Foondun2010,
abstract = {Consider a stochastic heat equation ∂tu=κ
∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated for infinitely-many large values of t. In the special case of the parabolic Anderson model – where σ(u)=λu for some λ>0 – this “peaking” is a way to make precise the notion of physical intermittency.},
author = {Foondun, Mohammud, Khoshnevisan, Davar},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic heat equation; intermittency},
language = {eng},
number = {4},
pages = {895-907},
publisher = {Gauthier-Villars},
title = {On the global maximum of the solution to a stochastic heat equation with compact-support initial data},
url = {http://eudml.org/doc/243484},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Foondun, Mohammud
AU - Khoshnevisan, Davar
TI - On the global maximum of the solution to a stochastic heat equation with compact-support initial data
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 895
EP - 907
AB - Consider a stochastic heat equation ∂tu=κ
∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated for infinitely-many large values of t. In the special case of the parabolic Anderson model – where σ(u)=λu for some λ>0 – this “peaking” is a way to make precise the notion of physical intermittency.
LA - eng
KW - stochastic heat equation; intermittency
UR - http://eudml.org/doc/243484
ER -
References
top- [1] L. Bertini and N. Cancrini. The stochastic heat equation: Feynman–Kac formula and intermittence. J. Statist. Physics 78 (1995) 1377–1402. Zbl1080.60508MR1316109
- [2] D. L. Burkholder. Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. Zbl0301.60035MR365692
- [3] R. A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. In Memoires of the AMS 108. Amer. Math. Soc., Rhode Island, 1994. Zbl0925.35074MR1185878
- [4] G. Choquet and J. Deny. Sur l’équation de convolution μ=μ∗σ. C. R. Acad. Sci. Paris 250 (1960) 799–801. Zbl0093.12802MR119041
- [5] R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualart and Y. Xiao. A Minicourse on Stochastic Partial Differential Equations. D. Khoshnevisan and F. Rassoul-Agha (Eds). Lecture Notes in Mathematics 1962. Springer, Berlin, 2009. MR1500166
- [6] R. C. Dalang and C. Mueller. Some non-linear s.p.d.e.’s that are second order in time. Electron. J. Probab. 8 (2003). Paper no. 1, 1–21 (electronic). Zbl1013.60044MR1961163
- [7] C. Donati-Martin and É. Pardoux. White noise driven SPDEs with reflection. Probab. Theory Related Fields 95 (1993) 1–24. Zbl0794.60059MR1207304
- [8] M. Foondun and D. Khoshnevisan. Intermittency and nonlinear parabolic stochastic partial differential equations. Preprint, 2008. Zbl1190.60051MR2480553
- [9] M. Foondun, D. Khoshnevisan and E. Nualart. A local time correspondence for stochastic partial differential equations. Preprint, 2008. Zbl1225.60103MR2763724
- [10] I. Gyöngy and D. Nualart. On the stochastic Burgers’ equation in the real line. Ann. Probab. 27 (1999) 782–802. Zbl0939.60058MR1698967
- [11] M. Kardar. Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B 290 (1987) 582–602. MR922846
- [12] M. Kardar, G. Parisi and Y.-C. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889–892. Zbl1101.82329
- [13] J. Krug and H. Spohn. Kinetic roughening of growing surfaces. In Solids Far from Equilibrium: Growth, Morphology, and Defects 479–582. C. Godrèche (Ed.). Cambridge Univ. Press, Cambridge, 1991.
- [14] C. Mueller. On the support of solutions to the heat equation with noise. Stochastics and Stoch. Reports 37 (1991) 225–245. Zbl0749.60057MR1149348
- [15] C. Mueller and E. A. Perkins. The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields 93 (1992) 325–358. Zbl0767.60054MR1180704
- [16] T. Shiga. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994) 415–437. Zbl0801.60050MR1271224
- [17] J. B. Walsh. An introduction to stochastic partial differential equations. In École d’été de probabilités de Saint-Flour XIV, 1984265–439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. Zbl0608.60060MR876085
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.