Initial measures for the stochastic heat equation
Daniel Conus; Mathew Joseph; Davar Khoshnevisan; Shang-Yuan Shiu
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 1, page 136-153
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topConus, Daniel, et al. "Initial measures for the stochastic heat equation." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 136-153. <http://eudml.org/doc/272019>.
@article{Conus2014,
abstract = {We consider a family of nonlinear stochastic heat equations of the form $\partial _\{t\}u=\mathcal \{L\}u+\sigma (u)\dot\{W\}$, where $\dot\{W\}$ denotes space–time white noise, $\mathcal \{L\}$ the generator of a symmetric Lévy process on $\mathbf \{R\} $, and $\sigma $ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure $u_\{0\}$. Tight a priori bounds on the moments of the solution are also obtained. In the particular case that $\mathcal \{L\}f=cf^\{\prime \prime \}$ for some $c>0$, we prove that if $u_\{0\}$ is a finite measure of compact support, then the solution is with probability one a bounded function for all times $t>0$.},
author = {Conus, Daniel, Joseph, Mathew, Khoshnevisan, Davar, Shiu, Shang-Yuan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {The stochastic heat equation; singular initial data; stochastic heat equation},
language = {eng},
number = {1},
pages = {136-153},
publisher = {Gauthier-Villars},
title = {Initial measures for the stochastic heat equation},
url = {http://eudml.org/doc/272019},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Conus, Daniel
AU - Joseph, Mathew
AU - Khoshnevisan, Davar
AU - Shiu, Shang-Yuan
TI - Initial measures for the stochastic heat equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 136
EP - 153
AB - We consider a family of nonlinear stochastic heat equations of the form $\partial _{t}u=\mathcal {L}u+\sigma (u)\dot{W}$, where $\dot{W}$ denotes space–time white noise, $\mathcal {L}$ the generator of a symmetric Lévy process on $\mathbf {R} $, and $\sigma $ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure $u_{0}$. Tight a priori bounds on the moments of the solution are also obtained. In the particular case that $\mathcal {L}f=cf^{\prime \prime }$ for some $c>0$, we prove that if $u_{0}$ is a finite measure of compact support, then the solution is with probability one a bounded function for all times $t>0$.
LA - eng
KW - The stochastic heat equation; singular initial data; stochastic heat equation
UR - http://eudml.org/doc/272019
ER -
References
top- [1] L. Bertini and N. Cancrini. The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys.78 (1994) 1377–1402. Zbl1080.60508MR1316109
- [2] A. Borodin and I. Corwin. Macdonald processes. Preprint, 2012. Available at http://arxiv.org/abs/1111.4408. Zbl1304.82047MR3204480
- [3] D. L. Burkholder. Martingale transforms. Ann. Math. Statist.37 (1966) 1494–1504. Zbl0306.60030MR208647
- [4] D. L. Burkholder, B. J. Davis and R. F. Gundy. Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II 223–240. Univ. California Press, Berkeley, CA, 1972. Zbl0253.60056MR400380
- [5] D. L. Burkholder and R. F. Gundy. Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math.124 (1970) 249–304. Zbl0223.60021MR440695
- [6] E. Carlen and P. Kree. estimates for multiple stochastic integrals. Ann. Probab.19 (1991) 354–368. Zbl0721.60052MR1085341
- [7] R. A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) vii + 129. Zbl0925.35074MR1185878
- [8] L. Chen and R. C. Dalang. Parabolic Anderson model driven by space–time white noise in with Schwartz distribution-valued initial data: Solutions and explicit formula for second moments. Preprint, 2011.
- [9] D. Conus and D. Khoshnevisan. Weak nonmild solutions to some SPDEs. Illinois J. Math. 54(4) (2010) 1329–1341. Zbl1259.60067MR2981850
- [10] D. Conus, M. Joseph and D. Khoshnevisan. On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear. Available at http://arxiv.org/abs/1104.0189. Zbl1286.60060MR3098071
- [11] R. C. Dalang. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 (1999) Paper no. 6, 29 (electronic). Zbl0922.60056MR1684157
- [12] R. C. Dalang and C. Mueller. Some non-linear S.P.D.E.’s that are second order in time. Electron. J. Probab. 8 (2003) Paper no. 1, 21 (electronic). Zbl1013.60044MR1961163
- [13] B. Davis. On the norms of stochastic integrals and other martingales. Duke Math. J.43 (1976) 697–704. Zbl0349.60061MR418219
- [14] M. Foondun and D. Khoshnevisan. On the global maximum of the solution to a stochastic heat equation with compact-support initial data, Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 895–907. Zbl1210.35305MR2744876
- [15] M. Foondun and D. Khoshnevisan. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J. Probab. 14 (2009) Paper no. 12, 548–568 (electronic). Zbl1190.60051MR2480553
- [16] M. Foondun, D. Khoshnevisan and E. Nualart. A local time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc.363 (2011) 2481–2515. Zbl1225.60103MR2763724
- [17] I. M. Gel’fand and N. Y. Vilenkin. Generalized Functions, Vol. 4: Applications of harmonic analysis. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Amiel Feinstein. Zbl0144.17202MR173945
- [18] I. Gyöngy and D. Nualart. On the stochastic Burgers’ equation in the real line. Ann. Probab.27 (1999) 782–802. Zbl0939.60058MR1698967
- [19] N. Jacob. Pseudo Differential Operators and Markov Processes, Vol. III. Imperial College Press, London, 2005. Zbl1076.60003MR2158336
- [20] M. Kardar. Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55 (1985) 2923.
- [21] M. Kardar, G. Parisi and Y.-C. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett.56 (1986) 889–892. Zbl1101.82329
- [22] C. Mueller. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep.37 (1991) 225–245. Zbl0749.60057MR1149348
- [23] J. B. Walsh. An introduction to stochastic partial differential equations. In École d’été de probabilités de Saint-Flour, XIV – 1984265–439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. Zbl0608.60060MR876085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.