Second order parabolic equations and weak uniqueness of diffusions with discontinuous coefficients

Doyoon Kim

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 1, page 55-76
  • ISSN: 0391-173X

Abstract

top
We prove the unique solvability of parabolic equations with discontinuous leading coefficients in W p 1 , 2 ( ( 0 , T ) × d ) . Using this result, we establish the uniqueness of diffusion processes with time-dependent discontinuous coefficients.

How to cite

top

Kim, Doyoon. "Second order parabolic equations and weak uniqueness of diffusions with discontinuous coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (2006): 55-76. <http://eudml.org/doc/243729>.

@article{Kim2006,
abstract = {We prove the unique solvability of parabolic equations with discontinuous leading coefficients in $W_\{p\}^\{1,2\}((0,T) \times \mathbb \{R\}^d)$. Using this result, we establish the uniqueness of diffusion processes with time-dependent discontinuous coefficients.},
author = {Kim, Doyoon},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {non-divergence form operator; discontinuity hyperplane},
language = {eng},
number = {1},
pages = {55-76},
publisher = {Scuola Normale Superiore, Pisa},
title = {Second order parabolic equations and weak uniqueness of diffusions with discontinuous coefficients},
url = {http://eudml.org/doc/243729},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Kim, Doyoon
TI - Second order parabolic equations and weak uniqueness of diffusions with discontinuous coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 1
SP - 55
EP - 76
AB - We prove the unique solvability of parabolic equations with discontinuous leading coefficients in $W_{p}^{1,2}((0,T) \times \mathbb {R}^d)$. Using this result, we establish the uniqueness of diffusion processes with time-dependent discontinuous coefficients.
LA - eng
KW - non-divergence form operator; discontinuity hyperplane
UR - http://eudml.org/doc/243729
ER -

References

top
  1. [1] H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. 35 (2000), 161–177. Dedicated to the memory of Branko Najman. Zbl0997.46029MR1783238
  2. [2] R. F. Bass and É. Pardoux, Uniqueness for diffusions with piecewise constant coefficients, Probab. Theory Related Fields 76(1987), 557–572. Zbl0617.60075MR917679
  3. [3] M. C. Cerutti, L. Escauriaza and E. B. Fabes, Uniqueness for some diffusions with discontinuous coefficients, Ann. Probab. 19 (1991), 525–537. Zbl0737.60038MR1106274
  4. [4] I. Karatzas and S. E. Shreve, “Brownian Motion and Stochastic Calculus”, Graduate Texts in Mathematics, Vol. 113, Springer-Verlag, New York, second edition, 1991. Zbl0734.60060MR1121940
  5. [5] D. Kim, Second order elliptic equations in d with piecewise continuous coefficients, Potential Anal., 2005, submitted. Zbl1152.35341MR2276531
  6. [6] N. V. Krylov, “Controlled Diffusion Processes”, Applications of Mathematics, Vol. 14, Springer-Verlag, New York, 1980. Translated from the Russian by A. B. Aries. Zbl0459.93002MR601776
  7. [7] N. V. Krylov, On weak uniqueness for some diffusions with discontinuous coefficients, Stochastic Process. Appl. 113 (2004), 37–64. Zbl1073.60064MR2078536
  8. [8] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralʼceva, “Linear and Quasilinear Equations of Parabolic Type”. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. Zbl0174.15403MR241822
  9. [9] G. M. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Zbl0884.35001MR1465184
  10. [10] A. Lorenzi, On elliptic equations with piecewise constant coefficients, Appl. Anal. 2 (1972), 79–96. Zbl0228.35031MR296490
  11. [11] A. Lorenzi, On elliptic equations with piecewise constant coefficients, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 839–870. Zbl0252.35019MR382836
  12. [12] S. Salsa, Un problema di Cauchy per un operatore parabolico con coefficienti costanti a tratti, Matematiche 31 (1977), 126–146. Zbl0383.35029MR499720
  13. [13] L. G. Softova, Quasilinear parabolic operators with discontinuous ingredients, Nonlinear Anal. 52 (2003), 1079–1093. Zbl1290.35144MR1941247
  14. [14] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Mathematical Series, Vol. 30, Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  15. [15] D. W. Stroock and S. R. Srinivasa Varadhan, “Multidimensional Diffusion Processes”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 233, Springer-Verlag, Berlin, 1979. Zbl0426.60069MR532498
  16. [16] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland Mathematical Library, Vol. 18, North-Holland Publishing Co., Amsterdam, 1978. Zbl0387.46032MR503903
  17. [17] P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed L p -norm, Electron. Res. Announc. Amer. Math. Soc. (electronic), 8 (2002), 47–51. Zbl1015.35036MR1945779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.