Process-level quenched large deviations for random walk in random environment

Firas Rassoul-Agha; Timo Seppäläinen

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 214-242
  • ISSN: 0246-0203

Abstract

top
We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.

How to cite

top

Rassoul-Agha, Firas, and Seppäläinen, Timo. "Process-level quenched large deviations for random walk in random environment." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 214-242. <http://eudml.org/doc/243826>.

@article{Rassoul2011,
abstract = {We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.},
author = {Rassoul-Agha, Firas, Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random environment; RWRE; large deviation; environment process; relative entropy; homogenization},
language = {eng},
number = {1},
pages = {214-242},
publisher = {Gauthier-Villars},
title = {Process-level quenched large deviations for random walk in random environment},
url = {http://eudml.org/doc/243826},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Rassoul-Agha, Firas
AU - Seppäläinen, Timo
TI - Process-level quenched large deviations for random walk in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 214
EP - 242
AB - We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.
LA - eng
KW - random walk; random environment; RWRE; large deviation; environment process; relative entropy; homogenization
UR - http://eudml.org/doc/243826
ER -

References

top
  1. [1] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Random walks in quenched i.i.d. space–time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133–156. Zbl1062.60044MR2052866
  2. [2] F. Comets, N. Gantert and O. Zeitouni. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000) 65–114. Zbl0965.60098MR1785454
  3. [3] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Applications of Mathematics 38. Springer, New York, 1998. Zbl0896.60013MR1619036
  4. [4] F. den Hollander. Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000. Zbl0949.60001MR1739680
  5. [5] J.-D. Deuschel and D. W. Stroock. Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA, 1989. Zbl0705.60029MR997938
  6. [6] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28 (1975) 1–47. Zbl0323.60069MR386024
  7. [7] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 (1976) 389–461. Zbl0348.60032MR428471
  8. [8] I. Ekeland and R. Témam. Convex Analysis and Variational Problems, English edition. Classics in Applied Mathematics 28. SIAM, Philadelphia, PA, 1999. Zbl0939.49002MR1727362
  9. [9] H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics 9. Walter de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
  10. [10] A. Greven and F. den Hollander. Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381–1428. Zbl0820.60054MR1303649
  11. [11] G. Kassay. A simple proof for König’s minimax theorem. Acta Math. Hungar. 63 (1994) 371–374. Zbl0811.90115MR1261480
  12. [12] E. Kosygina, F. Rezakhanlou and S. R. S. Varadhan. Stochastic homogenization of Hamilton–Jacobi–Bellman equations. Comm. Pure Appl. Math. 59 (2006) 1489–1521. Zbl1111.60055MR2248897
  13. [13] F. Rassoul-Agha. The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003) 1441–1463. Zbl1039.60089MR1989439
  14. [14] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space–time random environment. Probab. Theory Related Fields 133 (2005) 299–314. Zbl1088.60094MR2198014
  15. [15] F. Rassoul-Agha and T. Seppäläinen. A course on large deviation theory with an introduction to Gibbs measures. Preprint, 2009. Zbl1330.60001MR2521407
  16. [16] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, New York, 1971. Zbl0236.60002MR329037
  17. [17] J. Rosenbluth. Quenched large deviations for multidimensional random walk in random environment: A variational formula. Thesis dissertation, New York University, 2006. Available at http://arxiv.org/abs/0804.1444. MR2708406
  18. [18] W. Rudin. Functional Analysis, 2nd edition. McGraw-Hill, New York, 1991. Zbl0253.46001MR1157815
  19. [19] T. Seppäläinen. Large deviations for lattice systems. I. Parametrized independent fields. Probab. Theory Related Fields 96 (1993) 241–260. Zbl0792.60025MR1227034
  20. [20] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer, Berlin, 2006. Zbl1103.60005MR2190038
  21. [21] S. R. S. Varadhan. Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, PA, 1984. Zbl0549.60023MR758258
  22. [22] S. R. S. Varadhan. Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 (2003) 1222–1245. Dedicated to the memory of Jürgen K. Moser. Zbl1042.60071MR1989232
  23. [23] A. Yilmaz. Large deviations for random walk in a space–time product environment. Ann. Probab. 37 (2009a) 189–205. Zbl1159.60355MR2489163
  24. [24] A. Yilmaz. Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math. 62 (2009b) 1033–1075. Zbl1168.60370MR2531552
  25. [25] M. P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446–1476. Zbl0937.60095MR1675027

NotesEmbed ?

top

You must be logged in to post comments.