Process-level quenched large deviations for random walk in random environment

Firas Rassoul-Agha; Timo Seppäläinen

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 214-242
  • ISSN: 0246-0203

Abstract

top
We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.

How to cite

top

Rassoul-Agha, Firas, and Seppäläinen, Timo. "Process-level quenched large deviations for random walk in random environment." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 214-242. <http://eudml.org/doc/243826>.

@article{Rassoul2011,
abstract = {We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.},
author = {Rassoul-Agha, Firas, Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random environment; RWRE; large deviation; environment process; relative entropy; homogenization},
language = {eng},
number = {1},
pages = {214-242},
publisher = {Gauthier-Villars},
title = {Process-level quenched large deviations for random walk in random environment},
url = {http://eudml.org/doc/243826},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Rassoul-Agha, Firas
AU - Seppäläinen, Timo
TI - Process-level quenched large deviations for random walk in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 214
EP - 242
AB - We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.
LA - eng
KW - random walk; random environment; RWRE; large deviation; environment process; relative entropy; homogenization
UR - http://eudml.org/doc/243826
ER -

References

top
  1. [1] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Random walks in quenched i.i.d. space–time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133–156. Zbl1062.60044MR2052866
  2. [2] F. Comets, N. Gantert and O. Zeitouni. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000) 65–114. Zbl0965.60098MR1785454
  3. [3] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Applications of Mathematics 38. Springer, New York, 1998. Zbl0896.60013MR1619036
  4. [4] F. den Hollander. Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000. Zbl0949.60001MR1739680
  5. [5] J.-D. Deuschel and D. W. Stroock. Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA, 1989. Zbl0705.60029MR997938
  6. [6] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28 (1975) 1–47. Zbl0323.60069MR386024
  7. [7] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 (1976) 389–461. Zbl0348.60032MR428471
  8. [8] I. Ekeland and R. Témam. Convex Analysis and Variational Problems, English edition. Classics in Applied Mathematics 28. SIAM, Philadelphia, PA, 1999. Zbl0939.49002MR1727362
  9. [9] H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics 9. Walter de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
  10. [10] A. Greven and F. den Hollander. Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381–1428. Zbl0820.60054MR1303649
  11. [11] G. Kassay. A simple proof for König’s minimax theorem. Acta Math. Hungar. 63 (1994) 371–374. Zbl0811.90115MR1261480
  12. [12] E. Kosygina, F. Rezakhanlou and S. R. S. Varadhan. Stochastic homogenization of Hamilton–Jacobi–Bellman equations. Comm. Pure Appl. Math. 59 (2006) 1489–1521. Zbl1111.60055MR2248897
  13. [13] F. Rassoul-Agha. The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003) 1441–1463. Zbl1039.60089MR1989439
  14. [14] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space–time random environment. Probab. Theory Related Fields 133 (2005) 299–314. Zbl1088.60094MR2198014
  15. [15] F. Rassoul-Agha and T. Seppäläinen. A course on large deviation theory with an introduction to Gibbs measures. Preprint, 2009. Zbl1330.60001MR2521407
  16. [16] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, New York, 1971. Zbl0236.60002MR329037
  17. [17] J. Rosenbluth. Quenched large deviations for multidimensional random walk in random environment: A variational formula. Thesis dissertation, New York University, 2006. Available at http://arxiv.org/abs/0804.1444. MR2708406
  18. [18] W. Rudin. Functional Analysis, 2nd edition. McGraw-Hill, New York, 1991. Zbl0253.46001MR1157815
  19. [19] T. Seppäläinen. Large deviations for lattice systems. I. Parametrized independent fields. Probab. Theory Related Fields 96 (1993) 241–260. Zbl0792.60025MR1227034
  20. [20] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer, Berlin, 2006. Zbl1103.60005MR2190038
  21. [21] S. R. S. Varadhan. Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, PA, 1984. Zbl0549.60023MR758258
  22. [22] S. R. S. Varadhan. Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 (2003) 1222–1245. Dedicated to the memory of Jürgen K. Moser. Zbl1042.60071MR1989232
  23. [23] A. Yilmaz. Large deviations for random walk in a space–time product environment. Ann. Probab. 37 (2009a) 189–205. Zbl1159.60355MR2489163
  24. [24] A. Yilmaz. Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math. 62 (2009b) 1033–1075. Zbl1168.60370MR2531552
  25. [25] M. P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446–1476. Zbl0937.60095MR1675027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.