Large scale behavior of semiflexible heteropolymers
Francesco Caravenna; Giambattista Giacomin; Massimiliano Gubinelli
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 97-118
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCaravenna, Francesco, Giacomin, Giambattista, and Gubinelli, Massimiliano. "Large scale behavior of semiflexible heteropolymers." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 97-118. <http://eudml.org/doc/243899>.
@article{Caravenna2010,
abstract = {We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative Fourier analysis, we establish the brownian character of the model on large scales and we obtain an expression for the diffusion constant. We moreover give conditions yielding quantitative mixing properties.},
author = {Caravenna, Francesco, Giacomin, Giambattista, Gubinelli, Massimiliano},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {heteropolymer; semiflexible chain; disorder; persistence length; large scale limit; tensor analysis; non-commutative Fourier analysis},
language = {eng},
number = {1},
pages = {97-118},
publisher = {Gauthier-Villars},
title = {Large scale behavior of semiflexible heteropolymers},
url = {http://eudml.org/doc/243899},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Caravenna, Francesco
AU - Giacomin, Giambattista
AU - Gubinelli, Massimiliano
TI - Large scale behavior of semiflexible heteropolymers
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 97
EP - 118
AB - We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative Fourier analysis, we establish the brownian character of the model on large scales and we obtain an expression for the diffusion constant. We moreover give conditions yielding quantitative mixing properties.
LA - eng
KW - heteropolymer; semiflexible chain; disorder; persistence length; large scale limit; tensor analysis; non-commutative Fourier analysis
UR - http://eudml.org/doc/243899
ER -
References
top- [1] D. Bensimon, D. Dohmi and M. Mézard. Stretching a heteropolymer. Europhys. Lett. 42 (1998) 97–102.
- [2] K. F. Freed. Polymers as self-avoiding walks. Ann. Probab. 9 (1981) 537–556. Zbl0468.60097MR624681
- [3] P. G. de Gennes. Scaling Concepts in Polymer Physics. Cornell Univ. Press, Ithaca, NY, 1979.
- [4] P. R. Halmos. Measure Theory. Graduate Texts in Mathematics 18. Springer, Berlin, 1974. Zbl0283.28001
- [5] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis I. Grundlehren der Mathematischen Wissenschaften 115. Springer, Berlin, 1963. Zbl0115.10603
- [6] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis II. Grundlehren der Mathematischen Wissenschaften 152. Springer, Berlin, 1970. Zbl0830.43001MR262773
- [7] L. G. Gorostiza. The central limit theorem for random motions for d dimensional Euclidean space. Ann. Probab. 1 (1973) 603–612. Zbl0263.60010MR353408
- [8] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. Zbl1018.60002MR1943877
- [9] J. F. Marko and E. Siggia. Bending and twisting elasticity of DNA. Macromolecules 27 (1994) 981–988.
- [10] J. D. Moroz and P. Nelson. Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA 94 (1997) 14418–14422.
- [11] P. H. Roberts and H. D. Ursell. Random walk on a sphere and on a Riemannian manifold. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 252 (1960) 317–356. Zbl0094.31901MR117795
- [12] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales 2. Cambridge Mathematical Library. Cambridge Univ. Press, 2000. (Itô Calculus, 2nd edition.) Zbl0977.60005MR1780932
- [13] J. S. Rosenthal. Random rotations: Characters and random walks on SO(N). Ann. Probab. 22 (1994) 398–423. Zbl0799.60007MR1258882
- [14] B. Roynette. Théorème central-limite pour le groupe des déplacements de ℝd. Ann. Inst. H. Poincaré Probab. Statist. 10 (1974) 391–398. Zbl0324.60026MR375422
- [15] C. Vaillant, B. Audit, C. Thermes and A. Arnéodo. Formation and positioning of nucleosomes: Effect of sequence-dependent long-range correlated structural disorder. Eur. Phys. J. E 19 (2006) 263–277.
- [16] P. A. Wiggins and P. C. Nelson. Generalized theory of semiflexible polymers. Phys. Rev. E 73 (2006) 031906.
- [17] Y. Zhou and G. S. Chirikjian. Conformational statistics of semiflexible macromolecular chains with internal joints. Macromolecules 39 (2006) 1950–1960. MR2755422
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.