A condition for weak disorder for directed polymers in random environment.
We examine a heterogeneous alternating-direction method for the approximate solution of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challenging from a computational point of view. The heterogeneous alternating-direction scheme combines a spectral Galerkin method for...
A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes, a set of protein-protein...
We consider a model of the shape of a growing polymer introduced by Durrett and Rogers (Probab. Theory Related Fields92 (1992) 337–349). We prove their conjecture about the asymptotic behavior of the underlying continuous process Xt (corresponding to the location of the end of the polymer at time t) for a particular type of repelling interaction function without compact support.
The primary objective of this work is to develop coarse-graining schemes for stochastic many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the...
We consider a simple random walk of length N, denoted by (Si)i∈{1, …, N}, and we define (wi)i≥1 a sequence of centered i.i.d. random variables. For K∈ℕ we define ((γi−K, …, γiK))i≥1 an i.i.d sequence of random vectors. We set β∈ℝ, λ≥0 and h≥0, and transform the measure on the set of random walk trajectories with the hamiltonian λ∑i=1N(wi+h)sign(Si)+β∑j=−KK∑i=1Nγij1{Si=j}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We study the existence and the uniqueness of a solution to the linear Fokker-Planck equation in a bounded domain of when is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.
We consider the hierarchical disordered pinning model studied in (J. Statist. Phys.66 (1992) 1189–1213), which exhibits a localization/delocalization phase transition. In the case where the disorder is i.i.d. (independent and identically distributed), the question of relevance/irrelevance of disorder (i.e. whether disorder changes or not the critical properties with respect to the homogeneous case) is by now mathematically rather well understood (Probab. Theory Related Fields148 (2010) 159–175,...