Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators

Cristiana Bondioli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 4, page 219-233
  • ISSN: 1120-6330

Abstract

top
Let M be a Riemannian manifold, which possesses a transitive Lie group G of isometries. We suppose that G , and therefore M , are compact and connected. We characterize the Sobolev spaces W p 1 M 1 < p < + by means of the action of G on M . This characterization allows us to prove a regularity result for the solution of a second order differential equation on M by global techniques.

How to cite

top

Bondioli, Cristiana. "Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.4 (1996): 219-233. <http://eudml.org/doc/244073>.

@article{Bondioli1996,
abstract = {Let \( M \) be a Riemannian manifold, which possesses a transitive Lie group \( G \) of isometries. We suppose that \( G \), and therefore \( M \), are compact and connected. We characterize the Sobolev spaces \( W\_\{p\}^\{1\} (M) \)\( ( 1 < p < + \infty ) \) by means of the action of \( G \) on \( M \). This characterization allows us to prove a regularity result for the solution of a second order differential equation on \( M \) by global techniques.},
author = {Bondioli, Cristiana},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Compact homogeneous manifolds; Sobolev spaces; Invariant differential operators; compact homogeneous manifolds; invariant differential operators; Lie-algebra; second-order differential operator; Laplace-Beltrami operator},
language = {eng},
month = {12},
number = {4},
pages = {219-233},
publisher = {Accademia Nazionale dei Lincei},
title = {Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators},
url = {http://eudml.org/doc/244073},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Bondioli, Cristiana
TI - Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 4
SP - 219
EP - 233
AB - Let \( M \) be a Riemannian manifold, which possesses a transitive Lie group \( G \) of isometries. We suppose that \( G \), and therefore \( M \), are compact and connected. We characterize the Sobolev spaces \( W_{p}^{1} (M) \)\( ( 1 < p < + \infty ) \) by means of the action of \( G \) on \( M \). This characterization allows us to prove a regularity result for the solution of a second order differential equation on \( M \) by global techniques.
LA - eng
KW - Compact homogeneous manifolds; Sobolev spaces; Invariant differential operators; compact homogeneous manifolds; invariant differential operators; Lie-algebra; second-order differential operator; Laplace-Beltrami operator
UR - http://eudml.org/doc/244073
ER -

References

top
  1. ADAMS, R. A., Sobolev Spaces. Academic Press, New York1975. Zbl1098.46001MR450957
  2. AUBIN, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag, New York-Heidelberg-Berlin1982. Zbl0512.53044MR681859DOI10.1007/978-1-4612-5734-9
  3. BERNARDI, M. P. - BONDIOLI, C., Function spaces W 1 , p , B V , N λ , p characterized by the motions of R n . Annali Mat. Pura Appl., to appear. MR1625535DOI10.1007/BF01783471
  4. BIROLI, M. - MOSCO, U., Sobolev inequalities on homogeneous spaces. Potential Analysis, 4, 1995, 311-324. Zbl0833.46020MR1354886DOI10.1007/BF01053449
  5. BONDIOLI, C., Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. Zbl0772.46015MR1186914
  6. BONDIOLI, C., A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Math. Nachr., 166, 1994, 273-285. Zbl0837.35035MR1273338DOI10.1002/mana.19941660121
  7. BRÉZIS, H., Analyse fonctionnelle. Masson, Paris1983. Zbl0511.46001MR697382
  8. COIFMAN, R. R. - WEISS, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, n. 242, Springer-Verlag, Berlin-Heidelberg-New York1971. Zbl0224.43006MR499948
  9. HELGASON, S., Groups and Geometric Analysis. Academic Press, New York1984. Zbl0543.58001MR754767
  10. LIZORKIN, P. I. - NIKOL'SKTJ, S. M., Approximations of functions on manifolds. In: H. J. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart-Leipzig1993, 185-199. Zbl0798.41029MR1242583
  11. MATSUSHIMA, Y., Differentiable Manifolds. Marcel Dekkar Inc., New York1972. Zbl0233.58001MR346831
  12. MAZ'YA, V. G., Sobolev Spaces. Springer-Verlag, New York-Heidelberg-Berlin1985 (translation from Russian, Leningrad Univ., 1985). Zbl0692.46023MR817985
  13. NIRENBERG, L., Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math., 8, 1955, 648-674. Zbl0067.07602MR75415
  14. ROTSCHILD, L. P. - STEIN, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
  15. SKRZYPCZAK, L., Function spaces of Sobolev type on Riemannian symmetric manifolds. Forum Math., 3, 1991, 339-353. Zbl0738.46018MR1115951DOI10.1515/form.1991.3.339
  16. TRIEBEL, H., Theory of Function Spaces II. Birkhäuser, Basel-Boston-Berlin1992. Zbl0546.46027MR1163193DOI10.1007/978-3-0346-0419-2
  17. WALLACH, N. R., Harmonic Analysis on Homogeneous Spaces. Marcel Dekkar Inc., New York1973. Zbl0265.22022MR498996
  18. WARNER, F., Foundation of Differential Manifolds and Lie Groups. Academic Press, New York1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.