Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators
- Volume: 7, Issue: 4, page 219-233
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBondioli, Cristiana. "Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.4 (1996): 219-233. <http://eudml.org/doc/244073>.
@article{Bondioli1996,
abstract = {Let \( M \) be a Riemannian manifold, which possesses a transitive Lie group \( G \) of isometries. We suppose that \( G \), and therefore \( M \), are compact and connected. We characterize the Sobolev spaces \( W\_\{p\}^\{1\} (M) \)\( ( 1 < p < + \infty ) \) by means of the action of \( G \) on \( M \). This characterization allows us to prove a regularity result for the solution of a second order differential equation on \( M \) by global techniques.},
author = {Bondioli, Cristiana},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Compact homogeneous manifolds; Sobolev spaces; Invariant differential operators; compact homogeneous manifolds; invariant differential operators; Lie-algebra; second-order differential operator; Laplace-Beltrami operator},
language = {eng},
month = {12},
number = {4},
pages = {219-233},
publisher = {Accademia Nazionale dei Lincei},
title = {Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators},
url = {http://eudml.org/doc/244073},
volume = {7},
year = {1996},
}
TY - JOUR
AU - Bondioli, Cristiana
TI - Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 4
SP - 219
EP - 233
AB - Let \( M \) be a Riemannian manifold, which possesses a transitive Lie group \( G \) of isometries. We suppose that \( G \), and therefore \( M \), are compact and connected. We characterize the Sobolev spaces \( W_{p}^{1} (M) \)\( ( 1 < p < + \infty ) \) by means of the action of \( G \) on \( M \). This characterization allows us to prove a regularity result for the solution of a second order differential equation on \( M \) by global techniques.
LA - eng
KW - Compact homogeneous manifolds; Sobolev spaces; Invariant differential operators; compact homogeneous manifolds; invariant differential operators; Lie-algebra; second-order differential operator; Laplace-Beltrami operator
UR - http://eudml.org/doc/244073
ER -
References
top- ADAMS, R. A., Sobolev Spaces. Academic Press, New York1975. Zbl1098.46001MR450957
- AUBIN, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag, New York-Heidelberg-Berlin1982. Zbl0512.53044MR681859DOI10.1007/978-1-4612-5734-9
- BERNARDI, M. P. - BONDIOLI, C., Function spaces , , characterized by the motions of . Annali Mat. Pura Appl., to appear. MR1625535DOI10.1007/BF01783471
- BIROLI, M. - MOSCO, U., Sobolev inequalities on homogeneous spaces. Potential Analysis, 4, 1995, 311-324. Zbl0833.46020MR1354886DOI10.1007/BF01053449
- BONDIOLI, C., Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. Zbl0772.46015MR1186914
- BONDIOLI, C., A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Math. Nachr., 166, 1994, 273-285. Zbl0837.35035MR1273338DOI10.1002/mana.19941660121
- BRÉZIS, H., Analyse fonctionnelle. Masson, Paris1983. Zbl0511.46001MR697382
- COIFMAN, R. R. - WEISS, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, n. 242, Springer-Verlag, Berlin-Heidelberg-New York1971. Zbl0224.43006MR499948
- HELGASON, S., Groups and Geometric Analysis. Academic Press, New York1984. Zbl0543.58001MR754767
- LIZORKIN, P. I. - NIKOL'SKTJ, S. M., Approximations of functions on manifolds. In: H. J. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart-Leipzig1993, 185-199. Zbl0798.41029MR1242583
- MATSUSHIMA, Y., Differentiable Manifolds. Marcel Dekkar Inc., New York1972. Zbl0233.58001MR346831
- MAZ'YA, V. G., Sobolev Spaces. Springer-Verlag, New York-Heidelberg-Berlin1985 (translation from Russian, Leningrad Univ., 1985). Zbl0692.46023MR817985
- NIRENBERG, L., Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math., 8, 1955, 648-674. Zbl0067.07602MR75415
- ROTSCHILD, L. P. - STEIN, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
- SKRZYPCZAK, L., Function spaces of Sobolev type on Riemannian symmetric manifolds. Forum Math., 3, 1991, 339-353. Zbl0738.46018MR1115951DOI10.1515/form.1991.3.339
- TRIEBEL, H., Theory of Function Spaces II. Birkhäuser, Basel-Boston-Berlin1992. Zbl0546.46027MR1163193DOI10.1007/978-3-0346-0419-2
- WALLACH, N. R., Harmonic Analysis on Homogeneous Spaces. Marcel Dekkar Inc., New York1973. Zbl0265.22022MR498996
- WARNER, F., Foundation of Differential Manifolds and Lie Groups. Academic Press, New York1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.