Function spaces of Nikolskii type on compact manifold
- Volume: 3, Issue: 3, page 185-194
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBondioli, Cristiana. "Function spaces of Nikolskii type on compact manifold." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.3 (1992): 185-194. <http://eudml.org/doc/244171>.
@article{Bondioli1992,
abstract = {Nikolskii spaces were defined by way of translations on \( \mathbb\{R\}^\{n\} \) and by way of coordinate maps on a differentiable manifold. In this paper we prove that, for functions with compact support in \( \mathbb\{R\}^\{n\} \), we get an equivalent definition if we replace translations by all isometries of \( \mathbb\{R\}^\{n\} \). This result seems to justify a definition of Nikolskii type function spaces on riemannian manifolds by means of a transitive group of isometries (provided that one exists). By approximation theorems, we prove that - for homogeneous spaces of compact connected Lie groups - our definition is equivalent to the classical one.},
author = {Bondioli, Cristiana},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nikolskii spaces; Isometry groups; Compact homogeneous spaces; Nikolskii space; space of absolutely integrable functions; differentiable manifold; Riemannian manifold; transitive group of isometries; homogeneous spaces of compact connected Lie groups},
language = {eng},
month = {9},
number = {3},
pages = {185-194},
publisher = {Accademia Nazionale dei Lincei},
title = {Function spaces of Nikolskii type on compact manifold},
url = {http://eudml.org/doc/244171},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Bondioli, Cristiana
TI - Function spaces of Nikolskii type on compact manifold
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/9//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 3
SP - 185
EP - 194
AB - Nikolskii spaces were defined by way of translations on \( \mathbb{R}^{n} \) and by way of coordinate maps on a differentiable manifold. In this paper we prove that, for functions with compact support in \( \mathbb{R}^{n} \), we get an equivalent definition if we replace translations by all isometries of \( \mathbb{R}^{n} \). This result seems to justify a definition of Nikolskii type function spaces on riemannian manifolds by means of a transitive group of isometries (provided that one exists). By approximation theorems, we prove that - for homogeneous spaces of compact connected Lie groups - our definition is equivalent to the classical one.
LA - eng
KW - Nikolskii spaces; Isometry groups; Compact homogeneous spaces; Nikolskii space; space of absolutely integrable functions; differentiable manifold; Riemannian manifold; transitive group of isometries; homogeneous spaces of compact connected Lie groups
UR - http://eudml.org/doc/244171
ER -
References
top- BERNARDI, M. P. - BONDIOLI, G., Osservazioni ed esempi sugli spazi di Nikolskii. To appear.
- BERGH, J. - LÖFSTRÖM, J., Interpolation Spaces. Springer Verlag, Berlin-New York1976. Zbl0344.46071MR482275
- HELGASON, S., Differential Geometry and Symmetric Spaces. Academic Press, New York-London1962. Zbl0111.18101MR145455
- KUFNER, A. - JOHN, O. - FUCIK, S., Function Spaces. Academia, Prague1977. Zblpre05948865MR482102
- MAGENES, E., On a Stefan problem on the boundary of a domain. Proceedings of the Intern. Meeting on Partial Differential Equations and related Problems (in honour to L. Nirenberg) (Trento, 3- 8/9/1990), to appear. Zbl0803.35170MR1190942
- MAGENES, E. - VERDI, C. - VISINTIN, A., Some theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal., 26, 1989, 1425-1438. Zbl0738.65092MR1025097DOI10.1137/0726083
- MATSUSHIMA, Y., Differentiable Manifolds. Marcel Dekker Inc., New York1972. Zbl0233.58001MR346831
- MEYER, Y., Ondelettes. Ondelettes et opérateurs I. Hermann, Paris1990. Zbl0694.41037MR1085487
- NIKOLSKII, S. M., Approximation of Functions of Several Variables and Imbedding Theorems. Springer Verlag, Berlin-New York1975. Zbl0185.37901MR374877
- RICCI, F. - STEIN, E. M., Harmonic analysis on nilpotent groups and singular integrals. II: Singular kernels supported on submanifolds. J. Funct. Anal., 78, 1988, 56-84. Zbl0645.42019MR937632DOI10.1016/0022-1236(88)90132-2
- STEIN, E. M., Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
- TAIBLESON, M. H., On the theory of Lipschitz spaces of distributions on euclidean -space. I. J. Math. Mech , 13, 1964, 407-479. Zbl0132.09402MR163159
- VARADARAJAN, V. S., An Introduction to Harmonic Analysis on Semisimple Lie Groups. Cambridge University Press, Cambridge, N.J., 1989. Zbl0924.22014MR1071183
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.