On a construction of regular Hadamard matrices

David Benjamin Meisner

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 4, page 233-240
  • ISSN: 1120-6330

Abstract

top
We give a construction for regular Hadamard matrices of order a 2 v where a 1 is the order of a Hadamard matrix and v is the order of a regular Hadamard matrix. The construction can be used to construct regular Hadamard matrices with special properties and includes several constructions which have been given previously. In the final section we consider the case a = 2 in more detail.

How to cite

top

Meisner, David Benjamin. "On a construction of regular Hadamard matrices." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.4 (1992): 233-240. <http://eudml.org/doc/244076>.

@article{Meisner1992,
abstract = {We give a construction for regular Hadamard matrices of order \( a^\{2\} v \) where \( a \ne 1 \) is the order of a Hadamard matrix and \( v \) is the order of a regular Hadamard matrix. The construction can be used to construct regular Hadamard matrices with special properties and includes several constructions which have been given previously. In the final section we consider the case \( a = 2 \) in more detail.},
author = {Meisner, David Benjamin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hadamard matrices; Regular Hadamard matrices; Menon designs; regular Hadamard matrices; Hadamard matrix},
language = {eng},
month = {12},
number = {4},
pages = {233-240},
publisher = {Accademia Nazionale dei Lincei},
title = {On a construction of regular Hadamard matrices},
url = {http://eudml.org/doc/244076},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Meisner, David Benjamin
TI - On a construction of regular Hadamard matrices
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/12//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 4
SP - 233
EP - 240
AB - We give a construction for regular Hadamard matrices of order \( a^{2} v \) where \( a \ne 1 \) is the order of a Hadamard matrix and \( v \) is the order of a regular Hadamard matrix. The construction can be used to construct regular Hadamard matrices with special properties and includes several constructions which have been given previously. In the final section we consider the case \( a = 2 \) in more detail.
LA - eng
KW - Hadamard matrices; Regular Hadamard matrices; Menon designs; regular Hadamard matrices; Hadamard matrix
UR - http://eudml.org/doc/244076
ER -

References

top
  1. BETH, TH. - JUNGNICKEL, D. - LENZ, H., Design Theory. Bibliographisches Institut, Mannheim1985. Zbl0569.05002MR779284
  2. DIN, S. U. - MAVRON, V. C., On Designs Constructed from Hadamard Matrices. Proc. London Math. Soc. (3), 49, 1984, 9-21. Zbl0514.05014MR748990DOI10.1112/plms/s3-49.2.274
  3. LANDER, E. S., Symmetric Designs: An Algebraic Approach. London Math. Soc. Lecture Notes72, Cambridge University Press, Cambridge1983. Zbl0502.05010MR697566DOI10.1017/CBO9780511662164
  4. MENON, P. K., On Difference Sets whose Parameters Satisfy a Certain Relation. Proc. American Math. Soc, 13, 1962, 739-745. Zbl0122.01504MR142471
  5. SEBERRY, J. S., SBIBD 4 k 2 , 2 k 2 + k , k 2 + k and Hadamard Matrices of order 4 k 2 with Maximal Excess are Equivalent. Graphs Combin., 5, 1989, 373-383. Zbl0713.05017MR1032390DOI10.1007/BF01788694
  6. SZEKERES, G., A New Class of Symmetric Block Designs. J. Comb. Th., 6, 1969, 219-221. Zbl0175.01004MR236036
  7. WALLIS, W. D. - STREET, A. P. - WALLIS, J. S., Combinatorics: Room Squares, Sum Free Sets, Hadamard Matrices. Springer-Verlag, Berlin-Heidelberg-New York1972. MR392580

NotesEmbed ?

top

You must be logged in to post comments.