On a construction of regular Hadamard matrices
- Volume: 3, Issue: 4, page 233-240
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMeisner, David Benjamin. "On a construction of regular Hadamard matrices." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.4 (1992): 233-240. <http://eudml.org/doc/244076>.
@article{Meisner1992,
abstract = {We give a construction for regular Hadamard matrices of order \( a^\{2\} v \) where \( a \ne 1 \) is the order of a Hadamard matrix and \( v \) is the order of a regular Hadamard matrix. The construction can be used to construct regular Hadamard matrices with special properties and includes several constructions which have been given previously. In the final section we consider the case \( a = 2 \) in more detail.},
author = {Meisner, David Benjamin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hadamard matrices; Regular Hadamard matrices; Menon designs; regular Hadamard matrices; Hadamard matrix},
language = {eng},
month = {12},
number = {4},
pages = {233-240},
publisher = {Accademia Nazionale dei Lincei},
title = {On a construction of regular Hadamard matrices},
url = {http://eudml.org/doc/244076},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Meisner, David Benjamin
TI - On a construction of regular Hadamard matrices
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/12//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 4
SP - 233
EP - 240
AB - We give a construction for regular Hadamard matrices of order \( a^{2} v \) where \( a \ne 1 \) is the order of a Hadamard matrix and \( v \) is the order of a regular Hadamard matrix. The construction can be used to construct regular Hadamard matrices with special properties and includes several constructions which have been given previously. In the final section we consider the case \( a = 2 \) in more detail.
LA - eng
KW - Hadamard matrices; Regular Hadamard matrices; Menon designs; regular Hadamard matrices; Hadamard matrix
UR - http://eudml.org/doc/244076
ER -
References
top- BETH, TH. - JUNGNICKEL, D. - LENZ, H., Design Theory. Bibliographisches Institut, Mannheim1985. Zbl0569.05002MR779284
- DIN, S. U. - MAVRON, V. C., On Designs Constructed from Hadamard Matrices. Proc. London Math. Soc. (3), 49, 1984, 9-21. Zbl0514.05014MR748990DOI10.1112/plms/s3-49.2.274
- LANDER, E. S., Symmetric Designs: An Algebraic Approach. London Math. Soc. Lecture Notes72, Cambridge University Press, Cambridge1983. Zbl0502.05010MR697566DOI10.1017/CBO9780511662164
- MENON, P. K., On Difference Sets whose Parameters Satisfy a Certain Relation. Proc. American Math. Soc, 13, 1962, 739-745. Zbl0122.01504MR142471
- SEBERRY, J. S., SBIBD and Hadamard Matrices of order with Maximal Excess are Equivalent. Graphs Combin., 5, 1989, 373-383. Zbl0713.05017MR1032390DOI10.1007/BF01788694
- SZEKERES, G., A New Class of Symmetric Block Designs. J. Comb. Th., 6, 1969, 219-221. Zbl0175.01004MR236036
- WALLIS, W. D. - STREET, A. P. - WALLIS, J. S., Combinatorics: Room Squares, Sum Free Sets, Hadamard Matrices. Springer-Verlag, Berlin-Heidelberg-New York1972. MR392580
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.