Displaying similar documents to “On a construction of regular Hadamard matrices”

Certain new M-matrices and their properties with applications

Ratnakaram N. Mohan, Sanpei Kageyama, Moon H. Lee, G. Yang (2008)

Discussiones Mathematicae Probability and Statistics

Similarity:

The Mₙ-matrix was defined by Mohan [21] who has shown a method of constructing (1,-1)-matrices and studied some of their properties. The (1,-1)-matrices were constructed and studied by Cohn [6], Ehrlich [9], Ehrlich and Zeller [10], and Wang [34]. But in this paper, while giving some resemblances of this matrix with a Hadamard matrix, and by naming it as an M-matrix, we show how to construct partially balanced incomplete block designs and some regular graphs by it. Two types of these...

Complex Hadamard Matrices contained in a Bose–Mesner algebra

Takuya Ikuta, Akihiro Munemasa (2015)

Special Matrices

Similarity:

Acomplex Hadamard matrix is a square matrix H with complex entries of absolute value 1 satisfying HH* = nI, where * stands for the Hermitian transpose and I is the identity matrix of order n. In this paper, we first determine the image of a certain rational map from the d-dimensional complex projective space to Cd(d+1)/2. Applying this result with d = 3, we give constructions of complex Hadamard matrices, and more generally, type-II matrices, in the Bose–Mesner algebra of a certain 3-class...

Condition numbers of Hessenberg companion matrices

Michael Cox, Kevin N. Vander Meulen, Adam Van Tuyl, Joseph Voskamp (2024)

Czechoslovak Mathematical Journal

Similarity:

The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition...

Characterization of α1 and α2-matrices

Rafael Bru, Ljiljana Cvetković, Vladimir Kostić, Francisco Pedroche (2010)

Open Mathematics

Similarity:

This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.