Quaternionic-like structures on a manifold: Note I. 1-integrability and integrability conditions

Dmitri V. Alekseevsky; Stefano Marchiafava

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 1, page 43-52
  • ISSN: 1120-6330

Abstract

top
This Note will be followed by a Note II in these Rendiconti and successively by a wider and more detailed memoir to appear next. Here six quaternionic-like structures on a manifold M (almost quaternionic, hypercomplex, unimodular quaternionic, unimodular hypercomplex, Hermitian quaternionic, Hermitian hypercomplex) are defined and interrelations between them are studied in the framework of general theory of G-structures. Special connections are associated to these structures. 1-integrability and integrability conditions are derived. Decompositions of appropriate spaces of curvature tensors are given. In Note II the automorphism groups of these quaternionic-like structures will be considered.

How to cite

top

Alekseevsky, Dmitri V., and Marchiafava, Stefano. "Quaternionic-like structures on a manifold: Note I. 1-integrability and integrability conditions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.1 (1993): 43-52. <http://eudml.org/doc/244082>.

@article{Alekseevsky1993,
abstract = {This Note will be followed by a Note II in these Rendiconti and successively by a wider and more detailed memoir to appear next. Here six quaternionic-like structures on a manifold \( M \) (almost quaternionic, hypercomplex, unimodular quaternionic, unimodular hypercomplex, Hermitian quaternionic, Hermitian hypercomplex) are defined and interrelations between them are studied in the framework of general theory of G-structures. Special connections are associated to these structures. 1-integrability and integrability conditions are derived. Decompositions of appropriate spaces of curvature tensors are given. In Note II the automorphism groups of these quaternionic-like structures will be considered.},
author = {Alekseevsky, Dmitri V., Marchiafava, Stefano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {G-structures; Quaternionic structures; Special connections; Integrability conditions; Curvature tensors; almost quaternionic; hypercomplex; unimodular quaternionic; unimodular hypercomplex; Hermitian quaternionic; Hermitian hypercomplex; integrability},
language = {eng},
month = {3},
number = {1},
pages = {43-52},
publisher = {Accademia Nazionale dei Lincei},
title = {Quaternionic-like structures on a manifold: Note I. 1-integrability and integrability conditions},
url = {http://eudml.org/doc/244082},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Alekseevsky, Dmitri V.
AU - Marchiafava, Stefano
TI - Quaternionic-like structures on a manifold: Note I. 1-integrability and integrability conditions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/3//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 1
SP - 43
EP - 52
AB - This Note will be followed by a Note II in these Rendiconti and successively by a wider and more detailed memoir to appear next. Here six quaternionic-like structures on a manifold \( M \) (almost quaternionic, hypercomplex, unimodular quaternionic, unimodular hypercomplex, Hermitian quaternionic, Hermitian hypercomplex) are defined and interrelations between them are studied in the framework of general theory of G-structures. Special connections are associated to these structures. 1-integrability and integrability conditions are derived. Decompositions of appropriate spaces of curvature tensors are given. In Note II the automorphism groups of these quaternionic-like structures will be considered.
LA - eng
KW - G-structures; Quaternionic structures; Special connections; Integrability conditions; Curvature tensors; almost quaternionic; hypercomplex; unimodular quaternionic; unimodular hypercomplex; Hermitian quaternionic; Hermitian hypercomplex; integrability
UR - http://eudml.org/doc/244082
ER -

References

top
  1. ALEKSEEVSKY, D. V., Conformal mappings of G-structures. Functional Anal. Appl, 22, 1988, 311-313. Zbl0748.53015MR976996DOI10.1007/BF01077422
  2. ALEKSEEVSKY, D. V. - GRAEV, M. M., G-structures of twistor type on a manifold and underlying structures. Preprint Dip. Mat. Univ. «La Sapienza», Roma1991. MR1410066
  3. ALEKSEEVSKY, D. V. - MARCHIAFAVA, S., Quaternionic structures on a manifold and underlying structures. In preparation. Zbl0968.53033
  4. BERNARD, D., Sur la géométrie différentielle des G-structures. Ann. Inst. Fourier (Grenoble), 10, 1960, 151-270. Zbl0095.36406MR126800
  5. BONAN, E., Sur les G-structures de type quaternionien. Cahiers de topologie et géométrie différentielle, 9, 1967, 389-461. Zbl0171.20802MR233302
  6. CHERN, S. S., On a generalisation of Kähler geometry. Symposium in honor of S. Léfschetz on Algebraic geometry and topology. Princeton University Press, Princeton mathematical series, 18, 1957, 103-121. Zbl0078.14103MR87172
  7. CHERN, S. S., The geometry of G-structures. Bull. Amer. Math. Soc, 72, 1966, 167-219. Zbl0136.17804MR192436
  8. FUJIMURA, S., Q -connections and their changes on almost quaternion manifolds. Hokkaido Math. J., 5, 1976, 239-248. Zbl0333.53014MR407762
  9. KULKARNI, R. S., On the principle of uniformisation. J. Diff. Geom., 13, 1978, 109-138. Zbl0381.53023MR520605
  10. MUSSO, E., On the transformation group of a quaternionic manifold. Bollettino U.M.I., (7) 6-B, 1992, 67-78. Zbl0828.53028MR1164939
  11. OPROIU, V., Almost quaternal structures. An. st. Univ. «Al. I. Cuza» Iazi, 23, 1977, 287-298. Zbl0373.53017MR493860
  12. OPROIU, V., Integrability of almost quaternal structures. An. st. Univ. «Al. I. Cuza» Iazi, 30, 1984, 75-84. Zbl0573.53021MR800155
  13. SALAMON, S., Differential geometry of quaternionic manifolds. Ann. Scient. Ec. Norm. Sup., 4ème série, 19, 1986, 31-55. Zbl0616.53023MR860810
  14. SALAMON, S., Riemannian geometry and holonomy groups. Ed. Longman Scientific & Technical, UK, 1989. Zbl0685.53001MR1004008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.