Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian

Sundararaja Ramaswamy

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 3, page 213-217
  • ISSN: 1120-6330

Abstract

top
The aim of this paper is to characterize the u.s.c. (resp. l.s.c.) viscosity sub (resp. super) solutions of the Laplacian which do not take the value + (resp. - ) as precisely the sub (resp. super) harmonic functions.

How to cite

top

Ramaswamy, Sundararaja. "Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.3 (1993): 213-217. <http://eudml.org/doc/244138>.

@article{Ramaswamy1993,
abstract = {The aim of this paper is to characterize the u.s.c. (resp. l.s.c.) viscosity sub (resp. super) solutions of the Laplacian which do not take the value \( + \infty \) (resp. \( - \infty \)) as precisely the sub (resp. super) harmonic functions.},
author = {Ramaswamy, Sundararaja},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Viscosity solutions; Harmonic functions; Maximum principle; upper and lower semicontinuous sub- and super solutions},
language = {eng},
month = {9},
number = {3},
pages = {213-217},
publisher = {Accademia Nazionale dei Lincei},
title = {Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian},
url = {http://eudml.org/doc/244138},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Ramaswamy, Sundararaja
TI - Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/9//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 3
SP - 213
EP - 217
AB - The aim of this paper is to characterize the u.s.c. (resp. l.s.c.) viscosity sub (resp. super) solutions of the Laplacian which do not take the value \( + \infty \) (resp. \( - \infty \)) as precisely the sub (resp. super) harmonic functions.
LA - eng
KW - Viscosity solutions; Harmonic functions; Maximum principle; upper and lower semicontinuous sub- and super solutions
UR - http://eudml.org/doc/244138
ER -

References

top
  1. CAFFARELLI, L. A., Interior a priori estimates for solutions of fully non-linear equations. Annals of Math., 130, 1989, 189-213. Zbl0692.35017MR1005611DOI10.2307/1971480
  2. ISHII, H. - LIONS, P. L., Viscosity solutions of fully non-linear second order elliptic partial differential equations. J. Diff. Eqns., 83, 1990, 26-78. Zbl0708.35031MR1031377DOI10.1016/0022-0396(90)90068-Z
  3. MYTHILY RAMASWAMY, - RAMASWAMY, S., Local property of viscosity solutions of fully non-linear second order elliptic partial differential Equations. Preprint. Zbl0867.35028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.