Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form

Cristian E. Gutiérrez; Ermanno Lanconelli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 1, page 17-28
  • ISSN: 1120-6330

Abstract

top
We compare several definitions of weak solutions to second order partial differential equations with nonnegative characteristic form.

How to cite

top

Gutiérrez, Cristian E., and Lanconelli, Ermanno. "Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.1 (2004): 17-28. <http://eudml.org/doc/252320>.

@article{Gutiérrez2004,
abstract = {We compare several definitions of weak solutions to second order partial differential equations with nonnegative characteristic form.},
author = {Gutiérrez, Cristian E., Lanconelli, Ermanno},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Weak solutions; Viscosity solutions; Second order PDE’s with nonnegative characteristic form; Second order PDE's with nonnegative characteristic form; asymptotic-average solution; -solution; Pizzeti formula},
language = {eng},
month = {3},
number = {1},
pages = {17-28},
publisher = {Accademia Nazionale dei Lincei},
title = {Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form},
url = {http://eudml.org/doc/252320},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Gutiérrez, Cristian E.
AU - Lanconelli, Ermanno
TI - Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/3//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 1
SP - 17
EP - 28
AB - We compare several definitions of weak solutions to second order partial differential equations with nonnegative characteristic form.
LA - eng
KW - Weak solutions; Viscosity solutions; Second order PDE’s with nonnegative characteristic form; Second order PDE's with nonnegative characteristic form; asymptotic-average solution; -solution; Pizzeti formula
UR - http://eudml.org/doc/252320
ER -

References

top
  1. BONY, J.M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés. Ann. Inst. Fourier (Grenoble), 19, 1969, 277-304. Zbl0176.09703MR262881
  2. M. BRELOT et al. (eds.), Séminaire de théorie du potentiel, LNM 713. Berlin-Heidelberg-New York1979. 
  3. CITTI, G. - GAROFALO, N. - LANCONELLI, E., Harnack’s inequality for sum of squares of vector fields plus a potential. Amer. J. Math., 115(3), 1993, 699-734. Zbl0795.35018MR1221840DOI10.2307/2375077
  4. FULKS, W., An approximate Gauss mean value theorem. Pacific J. Math., 14, 1964, 513-516. Zbl0163.34503MR162047
  5. FULKS, W., A mean value theorem for the heat equation. Proc. Amer. Math. Soc., 17, 1966, 6-11. Zbl0152.10503MR192200
  6. GAROFALO, N. - LANCONELLI, E., Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type. Trans. Amer. Math. Soc., 321(2), 1990, 775-792. Zbl0719.35007MR998126DOI10.2307/2001585
  7. HANSSON, M., Harmonicity of functions satisfying a weak form of the mean value property. Arch. Math. (Basel), 76, 2001, 283-291. Zbl0992.31003MR1825008DOI10.1007/s000130050570
  8. KUPCOV, L.P., The mean value property and the maximum principle for second order parabolic equations. Dokl. Akad. Nauk SSSR, 242(3), 1978, 529-532. Zbl0436.35040MR507137
  9. LANCONELLI, E. - POLIDORO, S., On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino, 52(1), 1994, 29-63. Zbl0811.35018MR1289901
  10. LANCONELLI, E. - PASCUCCI, A., Superparabolic functions related to second order hypoelliptic operators. Potential Anal., 11(3), 1999, 303-323. Zbl0940.35054MR1717108DOI10.1023/A:1008689803518
  11. PAGANI, C.D., Approximation of the solutions to the first boundary value problem for parabolic equations. Confer. Sem. Mat. Univ. Bari, 154, 1978, 26 pp. Zbl0423.35046MR516134
  12. PINI, B., Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Univ. Padova, 23, 1954, 422-434. Zbl0057.32801MR65794
  13. PUCCI, C. - TALENTI, G., Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Advances in Math., 19(1), 1976, 48-105. MR419989
  14. RAMASWAMY, S., Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 213-217. Zbl0822.35019MR1250500
  15. UGUZZONI, F., A note on a generalized form of the Laplacian and of sub-Laplacians. Arch. Math. (Basel), 80, 2003, 516-524. Zbl1083.31006MR1995632DOI10.1007/s00013-003-4674-4
  16. WATSON, N.A., A theory of subtemperatures in several variables. Proc. London Math. Soc., 26(3), 1973, 385-417. Zbl0253.35045MR315289

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.