Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form
Cristian E. Gutiérrez; Ermanno Lanconelli
- Volume: 15, Issue: 1, page 17-28
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGutiérrez, Cristian E., and Lanconelli, Ermanno. "Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.1 (2004): 17-28. <http://eudml.org/doc/252320>.
@article{Gutiérrez2004,
abstract = {We compare several definitions of weak solutions to second order partial differential equations with nonnegative characteristic form.},
author = {Gutiérrez, Cristian E., Lanconelli, Ermanno},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Weak solutions; Viscosity solutions; Second order PDE’s with nonnegative characteristic form; Second order PDE's with nonnegative characteristic form; asymptotic-average solution; -solution; Pizzeti formula},
language = {eng},
month = {3},
number = {1},
pages = {17-28},
publisher = {Accademia Nazionale dei Lincei},
title = {Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form},
url = {http://eudml.org/doc/252320},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Gutiérrez, Cristian E.
AU - Lanconelli, Ermanno
TI - Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/3//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 1
SP - 17
EP - 28
AB - We compare several definitions of weak solutions to second order partial differential equations with nonnegative characteristic form.
LA - eng
KW - Weak solutions; Viscosity solutions; Second order PDE’s with nonnegative characteristic form; Second order PDE's with nonnegative characteristic form; asymptotic-average solution; -solution; Pizzeti formula
UR - http://eudml.org/doc/252320
ER -
References
top- BONY, J.M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés. Ann. Inst. Fourier (Grenoble), 19, 1969, 277-304. Zbl0176.09703MR262881
- M. BRELOT et al. (eds.), Séminaire de théorie du potentiel, LNM 713. Berlin-Heidelberg-New York1979.
- CITTI, G. - GAROFALO, N. - LANCONELLI, E., Harnack’s inequality for sum of squares of vector fields plus a potential. Amer. J. Math., 115(3), 1993, 699-734. Zbl0795.35018MR1221840DOI10.2307/2375077
- FULKS, W., An approximate Gauss mean value theorem. Pacific J. Math., 14, 1964, 513-516. Zbl0163.34503MR162047
- FULKS, W., A mean value theorem for the heat equation. Proc. Amer. Math. Soc., 17, 1966, 6-11. Zbl0152.10503MR192200
- GAROFALO, N. - LANCONELLI, E., Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type. Trans. Amer. Math. Soc., 321(2), 1990, 775-792. Zbl0719.35007MR998126DOI10.2307/2001585
- HANSSON, M., Harmonicity of functions satisfying a weak form of the mean value property. Arch. Math. (Basel), 76, 2001, 283-291. Zbl0992.31003MR1825008DOI10.1007/s000130050570
- KUPCOV, L.P., The mean value property and the maximum principle for second order parabolic equations. Dokl. Akad. Nauk SSSR, 242(3), 1978, 529-532. Zbl0436.35040MR507137
- LANCONELLI, E. - POLIDORO, S., On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino, 52(1), 1994, 29-63. Zbl0811.35018MR1289901
- LANCONELLI, E. - PASCUCCI, A., Superparabolic functions related to second order hypoelliptic operators. Potential Anal., 11(3), 1999, 303-323. Zbl0940.35054MR1717108DOI10.1023/A:1008689803518
- PAGANI, C.D., Approximation of the solutions to the first boundary value problem for parabolic equations. Confer. Sem. Mat. Univ. Bari, 154, 1978, 26 pp. Zbl0423.35046MR516134
- PINI, B., Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Univ. Padova, 23, 1954, 422-434. Zbl0057.32801MR65794
- PUCCI, C. - TALENTI, G., Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Advances in Math., 19(1), 1976, 48-105. MR419989
- RAMASWAMY, S., Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 213-217. Zbl0822.35019MR1250500
- UGUZZONI, F., A note on a generalized form of the Laplacian and of sub-Laplacians. Arch. Math. (Basel), 80, 2003, 516-524. Zbl1083.31006MR1995632DOI10.1007/s00013-003-4674-4
- WATSON, N.A., A theory of subtemperatures in several variables. Proc. London Math. Soc., 26(3), 1973, 385-417. Zbl0253.35045MR315289
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.