Convergence results for periodic solutions of nonautonomous Hamiltonian systems
- Volume: 1, Issue: 1, page 21-28
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGirardi, Mario, and Matzeu, Michele. "Convergence results for periodic solutions of nonautonomous Hamiltonian systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.1 (1990): 21-28. <http://eudml.org/doc/244141>.
@article{Girardi1990,
abstract = {We prove some stability results for a certain class of periodic solutions of nonautonomous Hamiltonian systems in the case of Hamiltonian functions either with subquadratic growth or homogeneous with superquadratic growth. Thus we extend to the nonautonomous case some results recently established by the Authors for the autonomous case.},
author = {Girardi, Mario, Matzeu, Michele},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Convergence; Periodic solutions; Hamiltonian systems; stability results; periodic solutions of nonautonomous Hamiltonian systems},
language = {eng},
month = {2},
number = {1},
pages = {21-28},
publisher = {Accademia Nazionale dei Lincei},
title = {Convergence results for periodic solutions of nonautonomous Hamiltonian systems},
url = {http://eudml.org/doc/244141},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Girardi, Mario
AU - Matzeu, Michele
TI - Convergence results for periodic solutions of nonautonomous Hamiltonian systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/2//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 1
SP - 21
EP - 28
AB - We prove some stability results for a certain class of periodic solutions of nonautonomous Hamiltonian systems in the case of Hamiltonian functions either with subquadratic growth or homogeneous with superquadratic growth. Thus we extend to the nonautonomous case some results recently established by the Authors for the autonomous case.
LA - eng
KW - Convergence; Periodic solutions; Hamiltonian systems; stability results; periodic solutions of nonautonomous Hamiltonian systems
UR - http://eudml.org/doc/244141
ER -
References
top- AMBROSETTI, A. - MANCINI, G., Solutions of minimal period for a class of convex Uamiltonian systems. Math. Ann.255, 1981, 404-421. Zbl0466.70022MR615860DOI10.1007/BF01450713
- CLARKE, F. - EKELAND, I., Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math.33, 1980, 103-116. Zbl0403.70016MR562546DOI10.1002/cpa.3160330202
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, vol. 58, fasc. 6, 1975, 842-850. Zbl0339.49005MR448194
- GIRARDI, M. - MATZEU, M., Some stability results on periodic Hamiltonian trajectories. Boll. UMI, (7), 2-A, 1988, 383-390. Zbl0669.70022MR966922
- GIRARDI, M. - MATZEU, M., Some convergence results for periodic Hamiltonian trajectories. Proceedings of the International Conference on Theory and Applications of Differential Equations (21-25/3/1988), vol. I, Ohio Univ.1989, 320-324. Zbl0712.58047MR1026156
- MARCELLINI, P. - SBORDONE, C., Dualità e perturbazione di funzionali integrali. Ricerche di Matematica, vol. 26, fasc. 2, 1977, 383-421. Zbl0393.49007MR467437
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.