On a variational theory of light rays on Lorentzian manifolds
Fabio Giannoni; Antonio Masiello
- Volume: 6, Issue: 3, page 155-159
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGiannoni, Fabio, and Masiello, Antonio. "On a variational theory of light rays on Lorentzian manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.3 (1995): 155-159. <http://eudml.org/doc/244145>.
@article{Giannoni1995,
abstract = {In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.},
author = {Giannoni, Fabio, Masiello, Antonio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lorentzian manifolds; Lightlike geodesies; Fermât principle; Morse theory; Fermat's principle; causality conditions},
language = {eng},
month = {10},
number = {3},
pages = {155-159},
publisher = {Accademia Nazionale dei Lincei},
title = {On a variational theory of light rays on Lorentzian manifolds},
url = {http://eudml.org/doc/244145},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Giannoni, Fabio
AU - Masiello, Antonio
TI - On a variational theory of light rays on Lorentzian manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/10//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 3
SP - 155
EP - 159
AB - In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.
LA - eng
KW - Lorentzian manifolds; Lightlike geodesies; Fermât principle; Morse theory; Fermat's principle; causality conditions
UR - http://eudml.org/doc/244145
ER -
References
top- BEEM, J. K. - EHRLICH, P. E., Global Lorentzian Geometry. Marcel Dekker Inc., New York-Basel1981. Zbl0846.53001MR619853
- BENCI, V. - MASIELLO, A., A Morse index for geodesics in static Lorentz manifolds. Math. Ann., 293, 1992, 433-442. Zbl0735.58011MR1170518DOI10.1007/BF01444726
- BENCI, V. - FORTUNATO, D. - MASIELLO, A., On the number of conjugate points along a geodesic of a Lorentzian manifold. Preprint.
- BOTT, R., Lectures on Morse Theory old and new. Bull. Am. Math. Soc., 7, 1982, 331-358. Zbl0505.58001MR663786DOI10.1090/S0273-0979-1982-15038-8
- FADELL, E. - HUSSEINI, A., Category of loop spaces of open subsets in Euclidean space. Nonlinear Analysis T.M.A., 17, 1991, 1153-1161. Zbl0756.55008MR1137900DOI10.1016/0362-546X(91)90234-R
- FORTUNATO, D. - GIANNONI, F. - MASIELLO, A., A Fermat principle for stationary space-times, with applications to light rays. J. Geom. Phys., 15, 1995, 159-188. Zbl0819.53037MR1310949DOI10.1016/0393-0440(94)00011-R
- GEROCH, R., Domains of dependence. J. Math. Phys., 11, 1970, 437-449. Zbl0189.27602MR270697
- GIANNONI, F. - MASIELLO, A., Morse Relations for geodesics on stationary Lorentzian manifolds with boundary. Topological Methods in Nonlinear Analysis, in press. Zbl0852.58016
- HELFER, A., Conjugate points on spacelike geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville operators. Preprint. Zbl0799.58018
- MASIELLO, A., Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, vol. 309, London1994. Zbl0816.58001MR1294140
- MILNOR, J., Morse Theory. Annals Math. Stud., vol. 51, Princeton University Press, Princeton1963. Zbl0108.10401MR163331
- MORSE, M., The Calculus of Variations in the Large. Coll. Lect.Am. Math. Soc., vol. 18, 1934. Zbl0011.02802
- O'NEILL, B., Semi-Riemannian Geometry with Applications to Relativity. Acad. Press Inc., New-York-London1983. Zbl0531.53051
- PENROSE, R., Techniques of Differential Topology in Relativity. Conf. Board Math. Sci., vol. 7, S.I.A.M., Philadelphia1972. Zbl0321.53001MR469146
- PERLICK, V., On Fermat's principle in general relativity: I. The general case. Class. Quantum Grav., 7, 1990, 1319-1331. Zbl0707.53054MR1064182
- UHLENBECK, K., A Morse Theory for geodesics on a Lorentz manifold. Topology, 14, 1975, 69-90. Zbl0323.58010MR383461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.