Some properties of collision and non-collision orbits for a class of singular dynamical systems
Vittorio Coti Zelati; Enrico Serra
- Volume: 3, Issue: 3, page 217-222
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCoti Zelati, Vittorio, and Serra, Enrico. "Some properties of collision and non-collision orbits for a class of singular dynamical systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.3 (1992): 217-222. <http://eudml.org/doc/244146>.
@article{CotiZelati1992,
abstract = {We present some regularity properties of periodic solutions to a class of singular potential problems and we discuss the existence of a regular solution.},
author = {Coti Zelati, Vittorio, Serra, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Periodic solutions; Kepler problem; Variational methods; variational methods; noncollision solution; regularity properties; periodic solutions; second order Hamiltonian system},
language = {eng},
month = {9},
number = {3},
pages = {217-222},
publisher = {Accademia Nazionale dei Lincei},
title = {Some properties of collision and non-collision orbits for a class of singular dynamical systems},
url = {http://eudml.org/doc/244146},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Coti Zelati, Vittorio
AU - Serra, Enrico
TI - Some properties of collision and non-collision orbits for a class of singular dynamical systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/9//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 3
SP - 217
EP - 222
AB - We present some regularity properties of periodic solutions to a class of singular potential problems and we discuss the existence of a regular solution.
LA - eng
KW - Periodic solutions; Kepler problem; Variational methods; variational methods; noncollision solution; regularity properties; periodic solutions; second order Hamiltonian system
UR - http://eudml.org/doc/244146
ER -
References
top- AMBROSETTI, A. - COTI ZELATI, V., Perturbations of Hamiltonian systems with Keplerian potentials. Math. Z., 201, 1989, 227-242. Zbl0653.34032MR997224DOI10.1007/BF01160679
- BAHRI, A. - LIONS, P. L., Morse index of some min-max critical points. I. Application to multiplicity results. Comm. Pure Appl. Math., 41, 1988, 1027-1037. Zbl0645.58013MR968487DOI10.1002/cpa.3160410803
- BAHRI, A. - RABINOWITZ, P. H., A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. Zbl0681.70018MR987301DOI10.1016/0022-1236(89)90078-5
- COTI ZELATI, V., Periodic solutions for a class of planar, singular dynamical systems. J. Math. Pures Appl., (9) 68, 1989, 109-119. Zbl0633.34034MR985956
- COTI ZELATI, V. - SERRA, E., Collision and non collision solutions for a class of Keplerian like dynamical Systems. Preprint SISSA (Trieste), 1991. Zbl0832.70009MR1313812DOI10.1007/BF01765642
- DEGIOVANNI, M. - GIANNONI, F., Periodic solutions of dynamical systems with Newtonian-type potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 1989, 467-494. Zbl0692.34050MR1015804
- SERRA, E. - TERRACINI, S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. TMA, to appear. Zbl0813.70006MR1256169DOI10.1016/0362-546X(94)90004-3
- SOLIMINI, S., Morse index estimates in min-max theorems. Manuscripta Math., 63, 1989, 421-453. Zbl0685.58010MR991264DOI10.1007/BF01171757
- TANAKA, K., Morse index at critical points related to the symmetric mountain pass theorem and applications. Commun. in Partial Diff. Eq., 14, 1989, 119-128. Zbl0669.34035MR973271DOI10.1080/03605308908820592
- TANAKA, K., Non-collisions for a second order singular Hamiltonian system with weak force. Preprint, Nagoya University, Japan, 1991. MR1220034
- TERRACINI, S., An homotopical index and multeplicity of periodic solutions to dynamical systems with singular potentials. J. Diff. Eq., to appear. Zbl0774.34028MR1170468DOI10.1016/0022-0396(92)90090-A
- VITERBO, C., Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré, Analyse non linéaire, 3, 1988, 221-225. Zbl0695.58007MR954472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.