Dynamical systems with newtonian type potentials

Marco Degiovanni; Fabio Giannoni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 3, page 467-494
  • ISSN: 0391-173X

How to cite


Degiovanni, Marco, and Giannoni, Fabio. "Dynamical systems with newtonian type potentials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 467-494. <http://eudml.org/doc/84038>.

author = {Degiovanni, Marco, Giannoni, Fabio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Newtonian type potentials; conservative dynamical system},
language = {eng},
number = {3},
pages = {467-494},
publisher = {Scuola normale superiore},
title = {Dynamical systems with newtonian type potentials},
url = {http://eudml.org/doc/84038},
volume = {15},
year = {1988},

AU - Degiovanni, Marco
AU - Giannoni, Fabio
TI - Dynamical systems with newtonian type potentials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 467
EP - 494
LA - eng
KW - Newtonian type potentials; conservative dynamical system
UR - http://eudml.org/doc/84038
ER -


  1. [1] A. Ambrosetti - V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré. Anal. Non Linéaire4 (1987), 275-296. Zbl0623.58013MR898050
  2. [2] A. Ambrosetti - V. Coti Zelati, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. (4) 149 (1987), 237-259. Zbl0642.58017MR932787
  3. [3] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré. Anal. Non. Linéaire1 (1984), 379-400. Zbl0561.58006MR779875
  4. [4] H. Brezis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North - Holland Mathematics Studies, 5, Notas de Matemàtica (50), North - Holland, Amsterdam - London, 1973. Zbl0252.47055
  5. [5] F.E. Browder, Nonlinear eigenvalue problems and group invariance, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, Chicago, Ill., 1968), 1-58, Springer, New York, 1970. Zbl0213.41304MR271781
  6. [6] A. Capozzi - C. Greco - A. Salvatore, Lagrangian systems in presence of singularities (preprint), Dip. Mat. Bari, Bari, 1985. Zbl0664.34054MR915729
  7. [7] V. Coti Zelati, Dynamical systems with effective-like potentials, Nonlinear Anal.12 (1988), 209-222. Zbl0648.34050MR926213
  8. [8] M. Degiovanni - F. Giannoni - A. Marino, Dynamical systems with Newtonian type potentials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 271-278. Zbl0667.70010MR999819
  9. [9] M. Degiovanni - F. Giannoni - A. Marino, Periodic solutions of dynamical systems with Newtonian type potentials, Periodic Solutions of Hamiltonian Systems and Related Topics (Il Ciocco, 1986), 111-115, NATO ASI Series, C209, Reidel, Dordrecht, 1987. Zbl0632.34038MR920613
  10. [10] W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975), 113-135. Zbl0276.58005MR377983
  11. [11] W.B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math.99 (1977), 961-971. Zbl0378.58006MR502484
  12. [12] C. Greco, Periodic solutions of some nonlinear ODE with singular nonlinear part (preprint), Dip. Mat. Bari, Bari, 1985. MR916285
  13. [13] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal.12 (1988), 259-270. Zbl0648.34048MR928560
  14. [14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, 230, Springer - Verlag, Berlin - New York, 1978. Zbl0397.58018MR478069
  15. [15] R.S. Palais, Critical point theory and the minimax principle, Global Analysis (Proc. Sympos. Pure Math., XV, Berkeley, Calif., 1968), 185-212, Amer. Math. Soc., Providence, R.I., 1970. Zbl0212.28902MR264712
  16. [16] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal.13 (1982), 343-352. Zbl0521.58028MR653462
  17. [17] J.T. Schwartz, Nonlinear functional analysis, Gordon & Breach, New York, 1969. Zbl0203.14501MR433481

Citations in EuDML Documents

  1. Ugo Bessi, Multiple closed orbits for singular conservative systems via geodesic theory
  2. P. Majer, Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems
  3. Vittorio Coti Zelati, Periodic solutions for N-body type problems
  4. Susanna Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems
  5. Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
  6. Kazunaga Tanaka, Non-collision solutions for a second order singular hamiltonian system with weak force
  7. Vittorio Coti Zelati, Enrico Serra, Some properties of collision and non-collision orbits for a class of singular dynamical systems
  8. Addolorata Salvatore, Multiple periodic solutions for Hamiltonian systems with singular potential
  9. Pengfei Yuan, Shiqing Zhang, New Periodic Solutions for N-Body Problems with Weak Force Potentials
  10. Antonio Ambrosetti, Critical points and nonlinear variational problems

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.