Dynamical systems with newtonian type potentials
Marco Degiovanni; Fabio Giannoni
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 3, page 467-494
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDegiovanni, Marco, and Giannoni, Fabio. "Dynamical systems with newtonian type potentials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 467-494. <http://eudml.org/doc/84038>.
@article{Degiovanni1988,
author = {Degiovanni, Marco, Giannoni, Fabio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Newtonian type potentials; conservative dynamical system},
language = {eng},
number = {3},
pages = {467-494},
publisher = {Scuola normale superiore},
title = {Dynamical systems with newtonian type potentials},
url = {http://eudml.org/doc/84038},
volume = {15},
year = {1988},
}
TY - JOUR
AU - Degiovanni, Marco
AU - Giannoni, Fabio
TI - Dynamical systems with newtonian type potentials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 467
EP - 494
LA - eng
KW - Newtonian type potentials; conservative dynamical system
UR - http://eudml.org/doc/84038
ER -
References
top- [1] A. Ambrosetti - V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré. Anal. Non Linéaire4 (1987), 275-296. Zbl0623.58013MR898050
- [2] A. Ambrosetti - V. Coti Zelati, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. (4) 149 (1987), 237-259. Zbl0642.58017MR932787
- [3] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré. Anal. Non. Linéaire1 (1984), 379-400. Zbl0561.58006MR779875
- [4] H. Brezis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North - Holland Mathematics Studies, 5, Notas de Matemàtica (50), North - Holland, Amsterdam - London, 1973. Zbl0252.47055
- [5] F.E. Browder, Nonlinear eigenvalue problems and group invariance, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, Chicago, Ill., 1968), 1-58, Springer, New York, 1970. Zbl0213.41304MR271781
- [6] A. Capozzi - C. Greco - A. Salvatore, Lagrangian systems in presence of singularities (preprint), Dip. Mat. Bari, Bari, 1985. Zbl0664.34054MR915729
- [7] V. Coti Zelati, Dynamical systems with effective-like potentials, Nonlinear Anal.12 (1988), 209-222. Zbl0648.34050MR926213
- [8] M. Degiovanni - F. Giannoni - A. Marino, Dynamical systems with Newtonian type potentials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 271-278. Zbl0667.70010MR999819
- [9] M. Degiovanni - F. Giannoni - A. Marino, Periodic solutions of dynamical systems with Newtonian type potentials, Periodic Solutions of Hamiltonian Systems and Related Topics (Il Ciocco, 1986), 111-115, NATO ASI Series, C209, Reidel, Dordrecht, 1987. Zbl0632.34038MR920613
- [10] W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975), 113-135. Zbl0276.58005MR377983
- [11] W.B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math.99 (1977), 961-971. Zbl0378.58006MR502484
- [12] C. Greco, Periodic solutions of some nonlinear ODE with singular nonlinear part (preprint), Dip. Mat. Bari, Bari, 1985. MR916285
- [13] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal.12 (1988), 259-270. Zbl0648.34048MR928560
- [14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, 230, Springer - Verlag, Berlin - New York, 1978. Zbl0397.58018MR478069
- [15] R.S. Palais, Critical point theory and the minimax principle, Global Analysis (Proc. Sympos. Pure Math., XV, Berkeley, Calif., 1968), 185-212, Amer. Math. Soc., Providence, R.I., 1970. Zbl0212.28902MR264712
- [16] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal.13 (1982), 343-352. Zbl0521.58028MR653462
- [17] J.T. Schwartz, Nonlinear functional analysis, Gordon & Breach, New York, 1969. Zbl0203.14501MR433481
Citations in EuDML Documents
top- Ugo Bessi, Multiple closed orbits for singular conservative systems via geodesic theory
- P. Majer, Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems
- Vittorio Coti Zelati, Periodic solutions for N-body type problems
- Susanna Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems
- Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
- Kazunaga Tanaka, Non-collision solutions for a second order singular hamiltonian system with weak force
- Vittorio Coti Zelati, Enrico Serra, Some properties of collision and non-collision orbits for a class of singular dynamical systems
- Addolorata Salvatore, Multiple periodic solutions for Hamiltonian systems with singular potential
- Pengfei Yuan, Shiqing Zhang, New Periodic Solutions for N-Body Problems with Weak Force Potentials
- Antonio Ambrosetti, Critical points and nonlinear variational problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.