Cohomology of tensor product of quantum planes

Paolo Papi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 1, page 5-13
  • ISSN: 1120-6330

Abstract

top
We consider the Lie algebra of inner derivations of the n -fold tensor product of Manin quantum planes and compute its second cohomology group with trivial coefficients.

How to cite

top

Papi, Paolo. "Cohomology of tensor product of quantum planes." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.1 (1992): 5-13. <http://eudml.org/doc/244159>.

@article{Papi1992,
abstract = {We consider the Lie algebra of inner derivations of the \( n \)-fold tensor product of Manin quantum planes and compute its second cohomology group with trivial coefficients.},
author = {Papi, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lie algebra; Cohomology; Non-commutative space; Laurent polynomial ring; Lie algebra of inner derivations; quantum planes; second cohomology},
language = {eng},
month = {3},
number = {1},
pages = {5-13},
publisher = {Accademia Nazionale dei Lincei},
title = {Cohomology of tensor product of quantum planes},
url = {http://eudml.org/doc/244159},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Papi, Paolo
TI - Cohomology of tensor product of quantum planes
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/3//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 1
SP - 5
EP - 13
AB - We consider the Lie algebra of inner derivations of the \( n \)-fold tensor product of Manin quantum planes and compute its second cohomology group with trivial coefficients.
LA - eng
KW - Lie algebra; Cohomology; Non-commutative space; Laurent polynomial ring; Lie algebra of inner derivations; quantum planes; second cohomology
UR - http://eudml.org/doc/244159
ER -

References

top
  1. DE CONCINI, C. - KAC, V., Representation of quantum groups at roots of 1. In: Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory. Progress in Math., n. 92, Birkhauser, 1991, 471-509. Zbl0738.17008
  2. KIRKMAN, E. - PROCESI, C. - SMALL, L., A q -analog for the Virasoro algebra. Preprint, l, 1990. Zbl0813.17009MR1280096DOI10.1080/00927879408825052
  3. Yu MANIN, , Quantum groups and non-commutative geometry. Les Publ. du Centres de Recherches Math., Université de Montreal, 1988. Zbl0724.17006MR1016381
  4. J. C. Mc CONNELL, - PETTIT, J. J., Crossed product and multiplicative analog of Weyl algebras. J. London Math. Soc, (2) 38, 1988, 47-55. Zbl0652.16007MR949080DOI10.1112/jlms/s2-38.1.47

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.