Solution sets of multivalued Sturm-Liouville problems in Banach spaces

Alessandro Margheri; Pietro Zecca

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 2, page 161-166
  • ISSN: 1120-6330

Abstract

top
We give some results about the topological structure of solution sets of multivalued Sturm-Liouville problems in Banach spaces.

How to cite

top

Margheri, Alessandro, and Zecca, Pietro. "Solution sets of multivalued Sturm-Liouville problems in Banach spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 161-166. <http://eudml.org/doc/244169>.

@article{Margheri1994,
abstract = {We give some results about the topological structure of solution sets of multivalued Sturm-Liouville problems in Banach spaces.},
author = {Margheri, Alessandro, Zecca, Pietro},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Solution set; Boundary value problem; Differential equations; boundary value problem; Banach space; retract},
language = {eng},
month = {6},
number = {2},
pages = {161-166},
publisher = {Accademia Nazionale dei Lincei},
title = {Solution sets of multivalued Sturm-Liouville problems in Banach spaces},
url = {http://eudml.org/doc/244169},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Margheri, Alessandro
AU - Zecca, Pietro
TI - Solution sets of multivalued Sturm-Liouville problems in Banach spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 161
EP - 166
AB - We give some results about the topological structure of solution sets of multivalued Sturm-Liouville problems in Banach spaces.
LA - eng
KW - Solution set; Boundary value problem; Differential equations; boundary value problem; Banach space; retract
UR - http://eudml.org/doc/244169
ER -

References

top
  1. BRESSAN, ALBERTO - CELLINA, A. - FRYZKG-WSKY, A., A class of absolute retracts in space of integrable functions. Proc. Amer. Math. Soc., 112, 1991, 413-418. Zbl0747.34014MR1045587DOI10.2307/2048734
  2. BREZIS, H., Analyse fonctionelle. Théorie et applications. Masson Editeur, Paris1983. Zbl1147.46300MR697382
  3. DE BLASI, F. - PIANIGIANI, G., Solution sets of boundary value problems for nonconvex differential inclusions. Preprint Centro Vito Volterra, Università degli Studi di Roma II Zbl0785.34018
  4. DEIMLING, K., Multivalued differential equations. In: Nonlinear Analysis. De Gruyter Series, 1, Berlin1992. Zbl0760.34002MR1189795DOI10.1515/9783110874228
  5. DIEUDONNÉ, J., Sur le Théorème de Lebesgue-Nikodym. Canadian J. Math., 3, 1951, 129-139. Zbl0042.35501MR44611
  6. HILLE, E. - PHILLIPS, R. S., Analysis and semi-groups. A.M.S. Colloquium Publications, vol. 31, Providence1957. Zbl0078.10004
  7. NADLER, S. B., Multivalued contraction mappings. Pacific J. Math., 30, 1969, 475-488. Zbl0187.45002MR254828
  8. RICCERI, B., Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes. Atti Acc. Lincei Rend. fis., s. 8, vol. 81, 1987, 283-286. Zbl0666.47030MR999821

NotesEmbed ?

top

You must be logged in to post comments.