Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems

Piero Montecchiari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 4, page 265-271
  • ISSN: 1120-6330

Abstract

top
We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.

How to cite

top

Montecchiari, Piero. "Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.4 (1993): 265-271. <http://eudml.org/doc/244177>.

@article{Montecchiari1993,
abstract = {We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.},
author = {Montecchiari, Piero},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hamiltonian systems; Homoclinic orbits; Multibump solutions; Minimax argument; asymptotically periodic Hamiltonian system; infinitely many homoclinic solutions; -bump solutions},
language = {eng},
month = {12},
number = {4},
pages = {265-271},
publisher = {Accademia Nazionale dei Lincei},
title = {Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems},
url = {http://eudml.org/doc/244177},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Montecchiari, Piero
TI - Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/12//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 4
SP - 265
EP - 271
AB - We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.
LA - eng
KW - Hamiltonian systems; Homoclinic orbits; Multibump solutions; Minimax argument; asymptotically periodic Hamiltonian system; infinitely many homoclinic solutions; -bump solutions
UR - http://eudml.org/doc/244177
ER -

References

top
  1. ALAMA, S. - LI, Y. Y., On «Multibump» Bound States for Certain Semilinear Elliptic Equations. Research Report No. 92-NA-012. Carnegie Mellon University, 1992. Zbl0796.35043MR1206338DOI10.1512/iumj.1992.41.41052
  2. AMBROSETTI, A., Critical points and nonlinear variational problems. Bul. Soc. Math. France, 120, 1992. Zbl0766.49006MR1164129
  3. COTI ZELATI, V. - EKELAND, I. - SÉRÉ, E., A Variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 133-160. Zbl0731.34050MR1070929DOI10.1007/BF01444526
  4. COTI ZELATI, V. - RABINOWITZ, P. H., Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4, 1991, 693-727. Zbl0744.34045MR1119200DOI10.2307/2939286
  5. HOFER, H. - WISOCKI, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 483-503. Zbl0702.34039MR1079873DOI10.1007/BF01444543
  6. LIONS, P.L., The concentration-compactness principle in the calculus of variations. Rev. Math. Iberoam., 1, 1985, 145-201. Zbl0704.49005MR834360DOI10.4171/RMI/6
  7. MONTECCHIARI, P., Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Preprint S.I.S.S.A., 1993. Zbl0849.34035MR1378249DOI10.1007/BF01759265
  8. RABINOWITZ, P. H., Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh, 1144, 1990, 33-38. Zbl0705.34054MR1051605DOI10.1017/S0308210500024240
  9. SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 209, 1992, 27-42. Zbl0725.58017MR1143210DOI10.1007/BF02570817
  10. SÉRÉ, E., Looking for the Bernoulli shift. Preprint CEREMADE, 1992. Zbl0803.58013MR1249107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.