Critical points and nonlinear variational problems

Antonio Ambrosetti

Mémoires de la Société Mathématique de France (1992)

  • Volume: 49, page 1-139
  • ISSN: 0249-633X

How to cite

top

Ambrosetti, Antonio. "Critical points and nonlinear variational problems." Mémoires de la Société Mathématique de France 49 (1992): 1-139. <http://eudml.org/doc/94900>.

@article{Ambrosetti1992,
author = {Ambrosetti, Antonio},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Lusternik-Schnirelman theory; mountain-pass; linking theorems},
language = {eng},
pages = {1-139},
publisher = {Société mathématique de France},
title = {Critical points and nonlinear variational problems},
url = {http://eudml.org/doc/94900},
volume = {49},
year = {1992},
}

TY - JOUR
AU - Ambrosetti, Antonio
TI - Critical points and nonlinear variational problems
JO - Mémoires de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 49
SP - 1
EP - 139
LA - eng
KW - Lusternik-Schnirelman theory; mountain-pass; linking theorems
UR - http://eudml.org/doc/94900
ER -

References

top
  1. [1] ALVINO A.-LIONSP.L.-TROMBETTI G., Comparaison des solutions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C.R.A.S. 303 (1986), 975-978. Zbl0617.35008
  2. [2] AMANN H.-HESS P., A multiplicity result for a class of elliptic boundary value problems Proc. Royal. Soc. Ed. 84, A (1979), 145-151. Zbl0416.35029MR80m:35032
  3. [3] AMANN H.-ZEHNDER E., Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 7 (1980), 539-603. Zbl0452.47077MR82b:47077
  4. [4] AMBROSETTI A., Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Acc. Naz. Lincei, 52 (1972), 660-667. Zbl0249.35030MR48 #9103
  5. [5] AMBROSETTI A., A perturbation theorem for superlinear boundary value problems, M.R.C. Tech. Summ. Rep. (1974). 
  6. [6] AMBROSETTI A., Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci. 18-1 (1984), 1-12. Zbl0589.35043MR86d:35049
  7. [7] AMBROSETTI A., Remarks on dynamical systems with singular potentials, in Nonlinear Analysis, a trubute in honour of Giovanni Prodi, Quaderni Scuola Norm. Sup. Pisa, (1991), 51-60. MR93m:58018
  8. [8] AMBROSETTI A.-BADIALE M., The dual variational principle and elliptic problems with discontinuous nonlinearities, Journ. Math. Anal. Appl. 140, 2 (1989), 363-373. Zbl0687.35033MR90k:35097
  9. [9] AMBROSETTI A.-BESSI U., Multiple periodic trajectories in a relativistic gravitational field, in Variational Methods (Ed.H. Berestycki et al.), Birkäuser, (1990), 373-381. Zbl0725.34038MR93k:58187
  10. [10] AMBROSETTI A.-BESSI U., Multiple closed orbits for perturbed Keplerian problems, J. Diff. Equat. to appear. Preliminary note in Rend. Mat. Acc. Lincei, s. 9, v. 2 (1991), 11-15. Zbl0759.34033MR92f:70011
  11. [11] AMBROSETTI A.-BERTOTTI M.L., Homoclinics for a second order conservative systems, Proc. Conf. in honour of L. Nirenberg, Trento 1990, to appear. Zbl0804.34046
  12. [12] AMBROSETTI A.-CALAHORRANO M. - DOBARRO F., Remarks on the Grad-Shafranov equation, Appl. Math. Lett. 3-3 (1990), 9-11. Zbl0772.35085MR91k:35085
  13. [13] AMBROSETTI A.-COTI ZELATI V., Critical point with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. 149 (1987), 237-259. Zbl0642.58017MR89e:58023
  14. [14] AMBROSETTI A.-COTI ZELATI V., Perturbation of Hamiltonian Systems with Keplerian Potentials, Mat. Zeit. 201 (1989), 227-242. Preliminary Note in C. R. Acad. Sci. Paris 307 (1988), 568-571. Zbl0653.34032MR90g:58105
  15. [15] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for singular Hamiltonian Systems, Archive Rat. Mech. Analysis, 112 (1990), 339-362. Zbl0737.70008MR91k:34053
  16. [16] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for a class of N-body problems, Annales Inst H. Poincaré Analyse Nonlin, to appear. Zbl0757.70007
  17. [17] AMBROSETTI A.-COTI ZELATI V. - EKELAND I., Symmetry breaking in Hamiltonian Systems, J. Diff. Equat. 67 (1987), 165-184. Zbl0606.58043MR88h:58040
  18. [18] AMBROSETTI A.-EKELAND I., Periodic solution of a class of Hamiltonian Systems with singularities, Proc. Royal Soc. Edinburgh 114 A (1990), 1-13. Zbl0708.34031MR91m:58127
  19. [19] AMBROSETTI A.-LUPO D., A class of nonlinear Dirichlet with multiple solutions, J. Nonlinear Anal. T.M.A..8-10 (1984), 1145-1150. Zbl0554.35046MR86d:35050
  20. [20] AMBROSETTI A.-MANCINI G., Sharp nonuniqueness results for some nonlinear problems, J. Nonlinear Anal. T.M.A. 3 (1979), 635-645. Zbl0433.35025MR80k:47073
  21. [21] AMBROSETTI A.-MANCINI G., Remarks on some free boundary problems, Contribution to nonlinear Partial Differential Equations, Pitman (1981), 24-36. Zbl0477.35084MR84b:35120
  22. [22] AMBROSETTI A.-MANCINI G., Solution of minimal period for a class of convex Hamiltonian systems, Math. Annalen 255 (1981), 405-421. Zbl0466.70022MR82j:58043
  23. [23] AMBROSETTI A.-MANCINI G., On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Equat.43 (1982), 249-256. Zbl0492.70018MR83m:58034
  24. [24] AMBROSETTI A.-PRODI G., On the inversion of some differentiable mapping with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246. Zbl0288.35020MR47 #9377
  25. [25] AMBROSETTI A.-PRODI G., A primer of Nonlinear Analysis, Cambridge Univ. Press, to appear. Zbl0781.47046
  26. [26] AMBROSETTI A.-RABINOWITZ P.H., Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381. Zbl0273.49063MR51 #6412
  27. [27] AMBROSETTI A.-SRIKANTH P.N., Superlinear elliptic problems and the dual principle in critical point theory, J. Math. Phys. Sci. 18-4 (1984), 441-451. Zbl0581.35020MR87g:35071
  28. [28] AMBROSETTI A.-STRUWE M., A note on the problem &#x002B; &#x0394;u &#x2017; &#x03BB;u &#x002C; u &#x007C;u&#x007C;2&#x22C6;-2, u &#x220A; H10, &#x03BB; &#x003E; 0, Manus Math. 54 (1986), 373-379. Zbl0596.35043MR87h:35076
  29. [29] AMBROSETTI A.-STRUWE M., Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal. 108, 2 (1989), 97-109. Zbl0694.76012MR90g:76036
  30. [30] AMBROSETTI A.-TURNER R.E.L., Some discontinuous variationals problems, Diff. and Integral. Equa. 1 (1988), 341-349. Zbl0728.35037MR89c:35052
  31. [31] AMBROSETTI A.-YANG JANFU, Asymptotic behaviour in planar vortex theory, Rend. Mat. Acc. Lincei, s.9-1 (1990), 285-291. Zbl0709.76027
  32. [32] AMICK C.J.-FRAENKEL L.E., The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 2 (1986), 91-119. Zbl0609.76018MR87b:35139
  33. [33] AMICK C.J.-TURNER R.E.L., A global branch of steady vortex rings, J. Reine Angw. Math. 384 (1988), 1-23. Zbl0628.76032MR89c:35134
  34. [34] BAHRI A., Topological results on a certain class of functionals and applications, J. Funct. Anal. 41 (1981), 397-427. Zbl0499.35050MR84c:58017
  35. [35] BAHRI A.-BERESTYCKI H., A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32. Zbl0476.35030MR82j:35059
  36. [36] BAHRI A.-CORON J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. Zbl0649.35033MR89c:35053
  37. [37] BAHRI A.-LIONS P.L., Morse index of some min-max critical points I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027-1037. Zbl0645.58013MR90b:58035
  38. [38] BAHRI A.-RABINOWITZ P.H., A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), 412-428. Zbl0681.70018MR90g:58030
  39. [39] BAHRI A.-RABINOWITZ P.H., Solutions of the three-body problem via critical points of infinity, Preprint. Zbl0704.58041
  40. [40] BANDLE C., Isoperimetric Inequalities and Applications, Pitman, London (1980). Zbl0436.35063MR81e:35095
  41. [41] BENCI V., A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E.'s, Comm. Pure Appl. Math. 34 (1981), 393-432. Zbl0447.34040MR82k:58040
  42. [42] BENCI V.-CERAMI G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal. 114 (1991), 79-93. Zbl0727.35055MR91j:35102
  43. [43] BENCI V.-GIANNONI F., Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82 (1989), 60-70. Zbl0689.34034MR90k:58176
  44. [44] BENCI V.-RABINOWITZ P.H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. Zbl0465.49006MR80i:58019
  45. [45] BERESTYCKI H.-LASRY J.M.-MANCINI G.-RUF B., Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. (1985), 253-290. Zbl0569.58027MR86j:58039
  46. [46] BERGER M.S. - FRAENKEL L.E., Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys. 77 (1980), 149-172. Zbl0454.35087MR81m:35055
  47. [47] BESSI U., Multiple closed orbits for singular conservative systems via geodesics theory, Rend. Sem. Mat. Univ. Padova, to appear. Zbl0850.70210
  48. [48] BESSI U., Multiple closed orbits of fixed energy for gravitational potentials, J. Diff. Eq., to appear. Zbl0787.34029
  49. [49] BESSI U., Multiple homoclinics for autonomous singular potentials, to appear. Zbl0812.58088
  50. [50] BESSI U. - COTI ZELATI V., Symmetries and noncollision closed orbits for a planar N-body type problems, J. Nonlin. Anal. T.M.A. 16 (1991), 587-598. Zbl0715.70016MR92a:70006
  51. [51] BREZIS H. - CORON J.M. - NIRENBERG L., Free vibrations for a nonlinear equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-684. Zbl0484.35057MR81k:35013
  52. [52] BREZIS H. - NIRENBERG L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl0541.35029MR84h:35059
  53. [53] BROWDER F., Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math. 82 (1965), 459-477. Zbl0136.12002MR34 #3102
  54. [54] CANDELA A.M., Remarks on the number of positive solutions for a class of nonlinear elliptic problems, Diff. & Int. Eq. (to appear). Zbl0784.35031
  55. [55] CAPOZZI A. - FORTUNATO D. - PALMIERI G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Poincaré, Anal. Nonlin. 2 (1985), 463-470. Zbl0612.35053MR87j:35126
  56. [56] CAPOZZI A. - GRECO C. - SALVATORE A., Lagrangian systems in presence of singularities, Proc. Am. Math. Soc. 102 (1988), 125-130. Zbl0664.34054MR88m:58167
  57. [57] CLARKE F.H., Periodic solutions of Hamiltonian inclusions, J. Diff. Equat. 40 (1981), 1-6. Zbl0461.34030MR83a:58035
  58. [58] CLARKE F.H. - EKELAND I., Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116. Zbl0403.70016MR81e:70017
  59. [59] CHANG C.K., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. Zbl0487.49027MR82h:35025
  60. [60] CHANG C.K., A remark on the perturbation of critical manifolds, Preprint Peking University. Zbl0742.57022
  61. [61] CERAMI G., Soluzioni positive di problemi con parte nonlienare discontinua e applicazioni a un problema di frontiera libera, Boll. U.M.I. 2 (1983), 321-338. Zbl0515.35025MR85a:35034
  62. [62] CORON J.M., Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris 299 (1984), 209-212. Zbl0569.35032MR86b:35059
  63. [63] COTI ZELATI V., Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pures et Appl. 68 (1989), 109-119. Zbl0633.34034MR90f:34071
  64. [64] COTI ZELATI V., A class of periodic solutions of the N-body problem, Cel. Mech. and Dyn. Astr. 46 (1989), 177-186. Zbl0684.70006MR91c:58116
  65. [65] COTI ZELATI V., Periodic solutions for N-body type problems, Annales Inst. H. Poincaré, Analyse Nonlin. 7 (1990), 477-492. Zbl0723.70010MR93a:70009
  66. [66] COTI ZELATI V. - EKELAND I. - SÉRÉ E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. Vol.288 (1990), 133-160. Zbl0731.34050MR91g:58065
  67. [67] COTI ZELATI V. - RABINOWITZ P.H., Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, Preprint SISSA, Trieste (1980). Zbl0744.34045
  68. [68] COTI ZELATI V. - SERRA E., Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Preprint SISSA, Trieste (1990). Zbl0832.70009
  69. [69] DANCER E.N., Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann. 272 (1985), 421-440. Zbl0556.35001MR86j:35056
  70. [70] DANCER E.N., The G-invariant implicit function theorem in infinite dimension, Proc. Roy. Soc. Edinburgh, 102-A (1986), 211-220. Zbl0601.58013MR87i:58015
  71. [71] DEGIOVANNI M.-GIANNONI F., Periodic solutions of dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 467-494. Zbl0692.34050MR91b:58201
  72. [72] EKELAND I., Nonconvex minimization problems, Bull. Am. Math. Soc. 1 (1979), 443-474. Zbl0441.49011MR80h:49007
  73. [73] EKELAND I., Convexity methods in hamiltonian mechanics, Springer, 1990. Zbl0707.70003MR91f:58027
  74. [74] EKELAND I.-HOFER H., Periodic solution with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math. 81 (1985), 155-188. Zbl0594.58035MR87b:58028
  75. [75] EKELAND I.-LASRY J.M., On the number of closed trajectories for a hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283-319. Zbl0449.70014MR81m:58032
  76. [76] FADELL E.-HUSSEINI S., A note on the category of free loop space, Proc. A.M.S. 107 (1989), 527-536. Zbl0676.58019MR90a:55008
  77. [77] FRAENKEL L.E.-BERGER M.S., A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13-51. Zbl0282.76014MR54 #10901
  78. [78] FUCIK S., Solvability of nonlinear equations and boundary value problems, D. Reidel Publ. Co., Dordrecht (1980). Zbl0453.47035MR83c:47079
  79. [79] GALLOUET T.-KAVIAN O., Resonance for jumping nonlinearities, Comm. P.D.E. 7-3 (1982), 325-342. Zbl0497.35080MR84f:35054
  80. [80] GIDAS B.-NI W.M.-NIRENBERG L., Symmetry and relates properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. Zbl0425.35020MR80h:35043
  81. [81] GIRARDI M.-MATZEU M., Essential critical points of linking type and solutions of minimal period to superquadratic hamiltonian systems, J. Nonlinear Analysis T.M.A., to appear. Zbl0776.58030
  82. [82] GORDON W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135. Zbl0276.58005MR51 #14152
  83. [83] GHOUSSOUB N.-PREISS D., A general mountain pass principle for locating and classifying critcal points, Annales Inst. H. Poincaré, Analyse Nonlineaire, 6 (1989), 321-330. Zbl0711.58008
  84. [84] GRECO C., Periodic solutions of a class of singular Hamiltonian systems, J. Nonlinear Analysis T.M.A. 12 (1988), 259-270. Zbl0648.34048MR89d:58040
  85. [85] HOFER H., A note on the topological degree at a critical point of mountain-pass type, Proc. Am. Math. Soc. 90 (1984), 309-315. Zbl0545.58015MR85a:58015
  86. [86] HOFER H.-WYSOCKI K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. Vol. 288 (1990), 483-503. Zbl0702.34039MR91m:58064
  87. [87] HOFER H.-ZEHNDER E., Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), 1-9. Zbl0631.58022MR89a:58040
  88. [88] KLINGENBERG W., Lectures on closed geodesics, Springer, 1978. Zbl0397.58018MR57 #17563
  89. [89] KASDAN J.L.-WARNER F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. Zbl0325.35038MR57 #16972
  90. [90] KOVALEVSKY J., Introduction to celestial Mechanics, D. Reidel Publ. Co., Dordrecht, 1967. Zbl0189.24502
  91. [91] KRASNOSELSKII M.A., Topological Methods in the theory of non-linear integral equations, Pergamon, Oxford, 1965. 
  92. [92] LANDESMAN E.M.-LAZER A.C., Nonlinear perturbations of linear elliptic problems at resonance, J. Math. Mech. 19 (1970), 609-623. Zbl0193.39203MR42 #2171
  93. [93] LAZER A.C.-MCKENNA P.J., On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294. Zbl0496.35039MR83e:35050
  94. [94] LAZZO M., Multiple positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, C.R. Acad. Sci. Paris, to appear. Zbl0761.35021
  95. [95] LEVI CIVITA T., Introduzione alla meccanica relativistica, Zanichelli, Bologna, 1928. Zbl54.0939.01
  96. [96] LUSTERNIK L.-SCHNIRELMAN L., Méthode topologique dans les problémes varationelles, Hermann, Paris (1934). Zbl0011.02803JFM60.1228.04
  97. [97] MAJER P., Ljusternik-Schnirelman theory without Palais-Smale condition and singular dynamical systems, Annales Inst. H. Poincaré, Analyse Nonlin.8 (1991), 459-476. Zbl0749.58046MR93e:58024
  98. [98] MAWHIN J.-WILLEM M., Critical point theory and hamiltonian systems, Springer, 1989. Zbl0676.58017MR90e:58016
  99. [99] MOSER J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747. Zbl0346.34024MR54 #13998
  100. [100] MOSER J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636. Zbl0193.53803MR42 #4824
  101. [101] NI W.M., On the existence of global vortex rings, J. d'Analyse Math. 37 (1980), 208-247. Zbl0457.76020MR81i:76017
  102. [102] NIRENBERG L., Variational and topological methods in nonlinear problems, Bull. A.M.S. 4-3 (1981), 267-302. Zbl0468.47040MR83e:58015
  103. [103] NORBURY J., A family of steady vortex rings, J. Fluid Mech. 57 (1973), 417-431. Zbl0254.76018
  104. [104] PALAIS R., Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203MR41 #4584
  105. [105] PALAIS R.-SMALE S., A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171. Zbl0119.09201MR28 #1634
  106. [106] POHOZAEV S.I., Eigenfunctions of the equations &#x0394;u &#x002B; &#x03BB;f(u) &#x003D 0, Soviet Math. 5 (1965), 1408-1411. Zbl0141.30202
  107. [107] RABINOWITZ P.H., Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. Zbl0358.70014MR57 #7674
  108. [108] RABINOWITZ P.H., A variational method for finding periodic solutions of differential equations, Nonlinear Evolution Equations (M.G. Crandall ed.), Academic Press (1978), 225-251. Zbl0486.35009MR80b:34043
  109. [109] RABINOWITZ P.H., On a theorem of Hofer and Zehnder, Periodic solutions of hamiltonian systems and related topics (P.H. Rabinowitz et al. ed.), NATO ASI Series C Vol. 209, Reidel Publ. Co., 1986, 245-253. Zbl0635.58014MR89g:58076
  110. [110] RABINOWITZ P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, A.M.S., Providence, 1986. Zbl0609.58002MR87j:58024
  111. [111] RABINOWITZ P.H., Homoclinic orbits for a class of Hamiltonian systems, Proceed. Royal Soc. Edinburgh, Vol.114A (1990), 33-38. Zbl0705.34054MR91c:58118
  112. [112] RABINOWITZ P.H.-TANAKA K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Zeit., to appear. Zbl0707.58022
  113. [113] SCHWARTZ J.T., Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315. Zbl0152.40801MR29 #4069
  114. [114] SÉRÉ E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., to appear. Zbl0725.58017
  115. [115] SERRA E., Dynamical systems with singular potentials : existence and qualitative properties of periodic motions, Ph.D. Thesis, SISSA, Trieste (1991). 
  116. [116] SERRA E.-TERRACINI S., Noncollision periodic solutions to some three- body like problems, Preprint SISSA, Trieste (1990). 
  117. [117] SRIKANTH P.N., Uniqueness of solutions of nonlinear Dirichlet problems, to appear. Zbl0803.35057
  118. [118] STAMPACCHIA G., Le probléme de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinuous, Ann. Inst. Fourier, 15 (1965), 189-258. Zbl0151.15401MR33 #404
  119. [119] STRUWE M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manus. Math. 32 (1980), 335-364. Zbl0456.35031MR82e:58030
  120. [120] STRUWE M., Variational methods, Springer, 1990. Zbl0746.49010MR92b:49002
  121. [121] STUART C., Differential equations with discontinuos nonlinearities, Arch. Rat. Mech. Anal. 63 (1976), 59-75. Zbl0393.34010MR58 #1355
  122. [122] STUART C.-TOLAND J.F., A variational method for boundary value problems with discontinuous non-linearities, J. London Math. Soc. 21 (1980), 319-328. Zbl0434.35042MR81i:35055
  123. [123] SZULKIN A., Ljusternik-Schnirelmann theory on C1 manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. Zbl0661.58009MR90a:58027
  124. [124] TANAKA K., Homoclinic orbits for a singular second order Hamiltonian system, Annales Inst. H. Poincaré, Analyse Non-lineaire, Vol.7 (1990), 427-438. Zbl0712.58026MR93g:58029
  125. [125] TANAKA K., Non-collision solutions for a second order singular Hamiltonian system with weak forces, Preprint (1991). 
  126. [126] TERRACINI S., Periodic solutions to dynamical systems with Keplerian type potentials, Ph.D. Thesis, SISSA, Trieste (1990). 
  127. [127] VAN GROESEN E.W.C., Analytical mini-max methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1-12. Zbl0665.70022
  128. [128] WANG Z.Q., On a superlinear elliptic equation, Annales Inst H. Poincaré Analyse nonlin. 8 (1991), 43-58. Zbl0733.35043MR92a:35064
  129. [129] WEINSTEIN A., Normal modes for nonlinear hamiltonian systems, Invent. Math. 20 (1973), 45-57. Zbl0264.70020MR48 #6564
  130. [130] WEINSTEIN A., Periodic orbits for convex hamiltonian systems, Ann. of Math. 108 (1978), 507-518. Zbl0403.58001MR80g:58034
  131. [131] YANG JANFU, Existence and asymptotic behaviour in planar vortex theory, to appear. 

Citations in EuDML Documents

top
  1. David Arcoya, Lucio Boccardo, A min-max theorem for multiple integrals of the Calculus of Variations and applications
  2. Carlo Carminati, Some perturbation results for non-linear problems
  3. Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
  4. Salvatore Bonafede, Existence results for a class of semilinear degenerate elliptic equations
  5. Antonio Ambrosetti, Vittorio Coti Zelati, Multiple homoclinic orbits for a class of conservative systems
  6. Antonio Ambrosetti, Marino Badiale, Homoclinics : Poincaré-Melnikov type results via a variational approach
  7. Piero Montecchiari, Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
  8. Piero Montecchiari, Multiplicity results for a class of semilinear elliptic equations on m
  9. Massimiliano Berti, Luca Biasco, Enrico Valdinoci, Periodic orbits close to elliptic tori and applications to the three-body problem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.