Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
Giuseppe Savaré; Augusto Visintin
- Volume: 8, Issue: 1, page 49-89
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topSavaré, Giuseppe, and Visintin, Augusto. "Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.1 (1997): 49-89. <http://eudml.org/doc/244178>.
@article{Savaré1997,
abstract = {We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.},
author = {Savaré, Giuseppe, Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Stefan problem; Concentrated capacity; Variational convergence; Subdifferential operators; Abstract evolution equations; concentrated capacity; subdifferential operators; abstract evolution equations},
language = {eng},
month = {4},
number = {1},
pages = {49-89},
publisher = {Accademia Nazionale dei Lincei},
title = {Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase},
url = {http://eudml.org/doc/244178},
volume = {8},
year = {1997},
}
TY - JOUR
AU - Savaré, Giuseppe
AU - Visintin, Augusto
TI - Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/4//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 1
SP - 49
EP - 89
AB - We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.
LA - eng
KW - Stefan problem; Concentrated capacity; Variational convergence; Subdifferential operators; Abstract evolution equations; concentrated capacity; subdifferential operators; abstract evolution equations
UR - http://eudml.org/doc/244178
ER -
References
top- ACERBI, E. - BUTTAZZO, G., Reinforcement problems in the calculus of variations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 3, 1986, 273-284. Zbl0607.73018MR853383
- ANDREUCCI, D., Existence and uniqueness of solutions to a concentrated capacity problem with change of phase. Europ. J. Appl. Math., 1, 1990, 330-351. Zbl0734.35161MR1117356DOI10.1017/S0956792500000280
- ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, London1984. Zbl0561.49012MR773850
- AUBIN, T., Non linear Analysis on Manifolds. Monge-Ampère Equations. Springer, New York1982. Zbl0512.53044
- BREZIS, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York1971, 101-156. Zbl0278.47033MR394323
- BREZIS, H., Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam1973. Zbl0252.47055
- BREZIS, H. - CAFFARELLI, L. A. - FRIEDMAN, A., Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. pura e appl., 123 (IV), 1980, 219-246. Zbl0434.35079MR581931DOI10.1007/BF01796546
- CANNON, J. R. - MEYER, G. H., On diffusion in a fractured medium. SIAM J. Appl. Math., 20(3), 1971, 434-448. Zbl0266.35002
- CIARLET, P. G., Plates and junctions in Elastic Multi-Structures. Masson-Springer-Verlag, Paris1990. Zbl0706.73046MR1071376
- CLARKE, F. H., Optimization and Nonsmooth Analysis. Wiley, New York1983. Zbl0582.49001MR709590
- COLLI, P. - RODRIGUES, J. F., Diffusion through thin layers with high specific heat. Asymptotic Anal., 3, 1990, 249-263. Zbl0724.35010MR1076450
- DAL MASO, G., An Introduction to -Convergence. Birkhäuser, Boston1993. MR1201152DOI10.1007/978-1-4612-0327-8
- DAMLAMIAN, A., Some results on the multi-phase Stefan problem. Comm. P.D.E., 2, 1977, 1017-1044. Zbl0399.35054MR487015
- DAMLAMIAN, A., How to homogenize a nonlinear diffusion equation: Stefan's problem. SIAM J. Math. Anal., 12, 1981, 306-313. Zbl0468.35052MR613313DOI10.1137/0512028
- DELFOUR, M. C. - ZOLÉSIO, J. P., Shape analysis via oriented distance functions. J. Funct. Anal., 86, 1989, 129-201. Zbl0814.49032MR1279299DOI10.1006/jfan.1994.1086
- DELFOUR, M. C. - ZOLÉSIO, J. P., A boundary differential equation for thin shells. J. Differential Equations, to appear. Zbl0827.73038
- DI BENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications. SIAM J. Math. Anal., 12, 1981, 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
- EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnels. Dunod, Gauthier-Villars, Paris1974. Zbl0281.49001MR463993
- EVANS, L. C. - GARIEPY, R., Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
- FASANO, A. - PRIMICERIO, M. - RUBINSTEIN, L., A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. Zbl0456.35093MR605396
- GILBARG, D. - TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin1983. Zbl0562.35001MR737190
- LE DRET, H., Problèmes variationnels dans les multi-domaines. Masson, Paris1991. MR1130395
- LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Gauthier-Villars, Paris1969. Zbl0189.40603MR259693
- LIONS, J. L. - MAGENES, E., Non Homogeneous Boundary Value Problems and Applications I, II. Springer Verlag, Berlin1972. Zbl0223.35039
- MAGENES, E., On a Stefan problem on a boundary of a domain. In: M. MIRANDA (ed.), Partial Differential Equations and Related Subjects. Longman Scient. Techn., 1992, 209-226. Zbl0803.35170MR1190942
- MAGENES, E., Some new results on a Stefan problem in a concentrated capacity. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 23-34. Zbl0767.35110MR1159996
- MAGENES, E., The Stefan problem in a concentrated capacity. In: P. E. RICCI (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica». Dip. di Matematica, Univ. «La Sapienza», Roma1993, 155-182. Zbl0803.35171MR1249096
- MAGENES, E., Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity. Proc. Int. Workshop Variational Methods, Nonlinear Analysis and Differential Equations. E.C.I.G., Genova, 1994, 88-106.
- MAGENES, E., On a Stefan problem in a concentrated capacity. In: P. MARCELLINI - G. TALENTI - E. VESENTINI (eds.), P.D.E. and Applications. Marcel Dekker, Inc., 1996, 237-253. Zbl0864.35127MR1371595
- MAGENES, E., Stefan problems in a concentrated capacity. Adv. Math. Comp. and Appl., Proc. AMCA 95, N.C.C. Pubbl., Novosibirsk1996, 82-90. Zbl0803.35171MR1701426
- MOSCO, U., Convergence of convex sets and of solutions of variational inequalities. Adv. in Math., 3, 1969, 510-585. Zbl0192.49101MR298508
- MOSCO, U., On the continuity of the Young-Fenchel transformation. J. Math. Anal. Appl., 35, 1971, 518-535. Zbl0253.46086MR283586
- PHAM HUY, H. - SANCHEZ-PALENCIA, E., Phénomènes de transmission à travers des couches minces de conductivité élevée. J. Math. Anal, and Appl., 47, 1974, 284-309. Zbl0286.35007MR400916
- RUBINSTEIN, L., The Stefan problem: Comments on its present state. J. Inst. Maths. Applics., 24, 1979, 259-277. Zbl0434.35086MR550476
- SANCHEZ-PALENCIA, E., Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité. J. Math. pures et appl., 53, 1974, 251-270. Zbl0273.35007MR364917
- SANCHEZ-PALENCIA, E., Non Homogeneous Media and Vibration Theory. Lect. Notes in Phys.127, Springer, Berlin-Heidelberg-New York1980. Zbl0432.70002MR578345
- SHILLOR, M., Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A. 100, 1985, 271-280. Zbl0591.35086MR807706DOI10.1017/S0308210500013810
- VISINTIN, A., Partial differential equations in domains with self contact. Rend. Sem. Mat. Univ. Padova, 81, 1989, 37-48. Zbl0696.35031MR1020184
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.