Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase

Giuseppe Savaré; Augusto Visintin

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 1, page 49-89
  • ISSN: 1120-6330

Abstract

top
We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.

How to cite

top

Savaré, Giuseppe, and Visintin, Augusto. "Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.1 (1997): 49-89. <http://eudml.org/doc/244178>.

@article{Savaré1997,
abstract = {We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.},
author = {Savaré, Giuseppe, Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Stefan problem; Concentrated capacity; Variational convergence; Subdifferential operators; Abstract evolution equations; concentrated capacity; subdifferential operators; abstract evolution equations},
language = {eng},
month = {4},
number = {1},
pages = {49-89},
publisher = {Accademia Nazionale dei Lincei},
title = {Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase},
url = {http://eudml.org/doc/244178},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Savaré, Giuseppe
AU - Visintin, Augusto
TI - Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/4//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 1
SP - 49
EP - 89
AB - We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.
LA - eng
KW - Stefan problem; Concentrated capacity; Variational convergence; Subdifferential operators; Abstract evolution equations; concentrated capacity; subdifferential operators; abstract evolution equations
UR - http://eudml.org/doc/244178
ER -

References

top
  1. ACERBI, E. - BUTTAZZO, G., Reinforcement problems in the calculus of variations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 3, 1986, 273-284. Zbl0607.73018MR853383
  2. ANDREUCCI, D., Existence and uniqueness of solutions to a concentrated capacity problem with change of phase. Europ. J. Appl. Math., 1, 1990, 330-351. Zbl0734.35161MR1117356DOI10.1017/S0956792500000280
  3. ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, London1984. Zbl0561.49012MR773850
  4. AUBIN, T., Non linear Analysis on Manifolds. Monge-Ampère Equations. Springer, New York1982. Zbl0512.53044
  5. BREZIS, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York1971, 101-156. Zbl0278.47033MR394323
  6. BREZIS, H., Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam1973. Zbl0252.47055
  7. BREZIS, H. - CAFFARELLI, L. A. - FRIEDMAN, A., Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. pura e appl., 123 (IV), 1980, 219-246. Zbl0434.35079MR581931DOI10.1007/BF01796546
  8. CANNON, J. R. - MEYER, G. H., On diffusion in a fractured medium. SIAM J. Appl. Math., 20(3), 1971, 434-448. Zbl0266.35002
  9. CIARLET, P. G., Plates and junctions in Elastic Multi-Structures. Masson-Springer-Verlag, Paris1990. Zbl0706.73046MR1071376
  10. CLARKE, F. H., Optimization and Nonsmooth Analysis. Wiley, New York1983. Zbl0582.49001MR709590
  11. COLLI, P. - RODRIGUES, J. F., Diffusion through thin layers with high specific heat. Asymptotic Anal., 3, 1990, 249-263. Zbl0724.35010MR1076450
  12. DAL MASO, G., An Introduction to Γ -Convergence. Birkhäuser, Boston1993. MR1201152DOI10.1007/978-1-4612-0327-8
  13. DAMLAMIAN, A., Some results on the multi-phase Stefan problem. Comm. P.D.E., 2, 1977, 1017-1044. Zbl0399.35054MR487015
  14. DAMLAMIAN, A., How to homogenize a nonlinear diffusion equation: Stefan's problem. SIAM J. Math. Anal., 12, 1981, 306-313. Zbl0468.35052MR613313DOI10.1137/0512028
  15. DELFOUR, M. C. - ZOLÉSIO, J. P., Shape analysis via oriented distance functions. J. Funct. Anal., 86, 1989, 129-201. Zbl0814.49032MR1279299DOI10.1006/jfan.1994.1086
  16. DELFOUR, M. C. - ZOLÉSIO, J. P., A boundary differential equation for thin shells. J. Differential Equations, to appear. Zbl0827.73038
  17. DI BENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications. SIAM J. Math. Anal., 12, 1981, 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
  18. EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnels. Dunod, Gauthier-Villars, Paris1974. Zbl0281.49001MR463993
  19. EVANS, L. C. - GARIEPY, R., Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
  20. FASANO, A. - PRIMICERIO, M. - RUBINSTEIN, L., A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. Zbl0456.35093MR605396
  21. GILBARG, D. - TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin1983. Zbl0562.35001MR737190
  22. LE DRET, H., Problèmes variationnels dans les multi-domaines. Masson, Paris1991. MR1130395
  23. LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Gauthier-Villars, Paris1969. Zbl0189.40603MR259693
  24. LIONS, J. L. - MAGENES, E., Non Homogeneous Boundary Value Problems and Applications I, II. Springer Verlag, Berlin1972. Zbl0223.35039
  25. MAGENES, E., On a Stefan problem on a boundary of a domain. In: M. MIRANDA (ed.), Partial Differential Equations and Related Subjects. Longman Scient. Techn., 1992, 209-226. Zbl0803.35170MR1190942
  26. MAGENES, E., Some new results on a Stefan problem in a concentrated capacity. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 23-34. Zbl0767.35110MR1159996
  27. MAGENES, E., The Stefan problem in a concentrated capacity. In: P. E. RICCI (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica». Dip. di Matematica, Univ. «La Sapienza», Roma1993, 155-182. Zbl0803.35171MR1249096
  28. MAGENES, E., Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity. Proc. Int. Workshop Variational Methods, Nonlinear Analysis and Differential Equations. E.C.I.G., Genova, 1994, 88-106. 
  29. MAGENES, E., On a Stefan problem in a concentrated capacity. In: P. MARCELLINI - G. TALENTI - E. VESENTINI (eds.), P.D.E. and Applications. Marcel Dekker, Inc., 1996, 237-253. Zbl0864.35127MR1371595
  30. MAGENES, E., Stefan problems in a concentrated capacity. Adv. Math. Comp. and Appl., Proc. AMCA 95, N.C.C. Pubbl., Novosibirsk1996, 82-90. Zbl0803.35171MR1701426
  31. MOSCO, U., Convergence of convex sets and of solutions of variational inequalities. Adv. in Math., 3, 1969, 510-585. Zbl0192.49101MR298508
  32. MOSCO, U., On the continuity of the Young-Fenchel transformation. J. Math. Anal. Appl., 35, 1971, 518-535. Zbl0253.46086MR283586
  33. PHAM HUY, H. - SANCHEZ-PALENCIA, E., Phénomènes de transmission à travers des couches minces de conductivité élevée. J. Math. Anal, and Appl., 47, 1974, 284-309. Zbl0286.35007MR400916
  34. RUBINSTEIN, L., The Stefan problem: Comments on its present state. J. Inst. Maths. Applics., 24, 1979, 259-277. Zbl0434.35086MR550476
  35. SANCHEZ-PALENCIA, E., Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité. J. Math. pures et appl., 53, 1974, 251-270. Zbl0273.35007MR364917
  36. SANCHEZ-PALENCIA, E., Non Homogeneous Media and Vibration Theory. Lect. Notes in Phys.127, Springer, Berlin-Heidelberg-New York1980. Zbl0432.70002MR578345
  37. SHILLOR, M., Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A. 100, 1985, 271-280. Zbl0591.35086MR807706DOI10.1017/S0308210500013810
  38. VISINTIN, A., Partial differential equations in domains with self contact. Rend. Sem. Mat. Univ. Padova, 81, 1989, 37-48. Zbl0696.35031MR1020184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.