On the existence of periodic solutions of an hyperbolic equation in a thin domain
Russell Johnson; Mikhail Kamenskii; Paolo Nistri
- Volume: 8, Issue: 3, page 189-195
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topJohnson, Russell, Kamenskii, Mikhail, and Nistri, Paolo. "On the existence of periodic solutions of an hyperbolic equation in a thin domain." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.3 (1997): 189-195. <http://eudml.org/doc/244222>.
@article{Johnson1997,
abstract = {For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.},
author = {Johnson, Russell, Kamenskii, Mikhail, Nistri, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hyperbolic nonlinear equations; Periodic solutions; Topological degree; non-autonomous and autonomous cases; admissible homotopies},
language = {eng},
month = {10},
number = {3},
pages = {189-195},
publisher = {Accademia Nazionale dei Lincei},
title = {On the existence of periodic solutions of an hyperbolic equation in a thin domain},
url = {http://eudml.org/doc/244222},
volume = {8},
year = {1997},
}
TY - JOUR
AU - Johnson, Russell
AU - Kamenskii, Mikhail
AU - Nistri, Paolo
TI - On the existence of periodic solutions of an hyperbolic equation in a thin domain
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/10//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 3
SP - 189
EP - 195
AB - For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
LA - eng
KW - Hyperbolic nonlinear equations; Periodic solutions; Topological degree; non-autonomous and autonomous cases; admissible homotopies
UR - http://eudml.org/doc/244222
ER -
References
top- CIUPERCA, I., Lower semicontinuity of attractors for a reaction-diffusion equation on thin domains with varying order of thinness. Preprint, Université de Paris-Sud, 1996. MR1383978DOI10.1006/jdeq.1996.0051
- CIUPERCA, I., Reaction-diffusion equations on thin domains with varying order of thinness. Jour. Diff. Eqns., 126, 1996, 244-291. Zbl0849.35049MR1383978DOI10.1006/jdeq.1996.0051
- GOUROVA, I. N. - KAMENSKII, M. I., On the method of semidiscretization in periodic solutions problems for quasilinear autonomous parabolic equations. Differential Equations, 32, 1996, 101-106 (in Russian). Zbl0877.35057MR1432954
- HALE, J. - RAUGEL, G., A damped hyperbolic equation on thin domains. Trans. Am. Math. Soc., 329, 1992, 185-219. Zbl0761.35052MR1040261DOI10.2307/2154084
- HALE, J. - RAUGEL, G., Reaction-diffusion equations in thin domains. Jour. Math. Pures et Appl., 71, 1992, 33-95. Zbl0840.35044MR1151557
- HALE, J. - RAUGEL, G., Limits of semigroups depending on parameters. Resenhas IME-USP, 1, 1993, 1-45. Zbl0863.58046MR1257603
- JOHNSON, R. - KAMENSKII, M. I. - NISTRI, P., Existence of periodic solutions for an autonomous damped wave equation in a thin domain. Submitted. Zbl0910.35009
- JOHNSON, R. - KAMENSKII, M. I. - NISTRI, P., On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods. Jour. Diff. Eqns., to appear. Zbl0890.35078MR1473860DOI10.1006/jdeq.1997.3301
- KRASNOSELSKII, M. - ZABREIKO, P. - PUSTYL'NIK, E. - SOBOLEVSKI, P., Integral Operators in Spaces of Summable Functions. Noordhooff International Publishing, Leyden1976. Zbl0145.39703MR385645
- KREIN, S., Linear Differential Equations in Banach Spaces. Nauka, Moscow1967. MR247239
- RAUGEL, G., Dynamics of partial differential equations in thin domains. Lecture Notes in Mathematics, Springer-Verlag, Berlin1995, 1609, 208-315. Zbl0851.58038MR1374110DOI10.1007/BFb0095241
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.