Heteroclinic solutions for perturbed second order systems
- Volume: 8, Issue: 4, page 251-262
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. C. R. Acad. Sci. Paris, t. 323, Série I, 1996, 753-758; and Annales I.H.P., to appear. Zbl0887.34042MR1416171DOI10.1016/S0294-1449(97)89300-6
- BERTI, M. - BOLLE, P., Homoclinics and Chaotic Behaviour for Perturbed Second Order Systems. Preprint S.N.S. n. 3. Zbl0957.37019MR1746547DOI10.1007/BF02506001
- MELNIKOV, V. K., On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc., 12, 1963, 3-52. Zbl0135.31001MR156048
- POINCARÉ, H., Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris1889. JFM30.0834.08
- SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Zeitschrift, 209, 1992, 27-42. Zbl0725.58017MR1143210DOI10.1007/BF02570817
- SÉRÉ, E., Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. Nonlin., 10, 1993, 561- 590. Zbl0803.58013MR1249107