Heteroclinic solutions for perturbed second order systems

Massimiliano Berti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 4, page 251-262
  • ISSN: 1120-6330

Abstract

top
The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.

How to cite

top

Berti, Massimiliano. "Heteroclinic solutions for perturbed second order systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.4 (1997): 251-262. <http://eudml.org/doc/244247>.

@article{Berti1997,
abstract = {The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.},
author = {Berti, Massimiliano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Heteroclinic orbits; Homoclinic orbits; Chaotic dynamics; heteroclinic orbits; perturbed Lagrangian systems; hyperbolic equilibria; Bernoulli shift},
language = {eng},
month = {12},
number = {4},
pages = {251-262},
publisher = {Accademia Nazionale dei Lincei},
title = {Heteroclinic solutions for perturbed second order systems},
url = {http://eudml.org/doc/244247},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Berti, Massimiliano
TI - Heteroclinic solutions for perturbed second order systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/12//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 4
SP - 251
EP - 262
AB - The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.
LA - eng
KW - Heteroclinic orbits; Homoclinic orbits; Chaotic dynamics; heteroclinic orbits; perturbed Lagrangian systems; hyperbolic equilibria; Bernoulli shift
UR - http://eudml.org/doc/244247
ER -

References

top
  1. AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. C. R. Acad. Sci. Paris, t. 323, Série I, 1996, 753-758; and Annales I.H.P., to appear. Zbl0887.34042MR1416171DOI10.1016/S0294-1449(97)89300-6
  2. BERTI, M. - BOLLE, P., Homoclinics and Chaotic Behaviour for Perturbed Second Order Systems. Preprint S.N.S. n. 3. Zbl0957.37019MR1746547DOI10.1007/BF02506001
  3. MELNIKOV, V. K., On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc., 12, 1963, 3-52. Zbl0135.31001MR156048
  4. POINCARÉ, H., Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris1889. JFM30.0834.08
  5. SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Zeitschrift, 209, 1992, 27-42. Zbl0725.58017MR1143210DOI10.1007/BF02570817
  6. SÉRÉ, E., Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. Nonlin., 10, 1993, 561- 590. Zbl0803.58013MR1249107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.