### An extension of the Artin-Mazur theorem.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.

The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as...

We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.