The multiple layer potential for the biharmonic equation in variables
- Volume: 3, Issue: 4, page 241-259
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCialdea, Alberto. "The multiple layer potential for the biharmonic equation in \( n \) variables." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.4 (1992): 241-259. <http://eudml.org/doc/244277>.
@article{Cialdea1992,
abstract = {The definition of multiple layer potential for the biharmonic equation in \( \mathbb\{R\}^\{n\} \) is given. In order to represent the solution of Dirichlet problem by means of such a potential, a singular integral system, whose symbol determinant identically vanishes, is considered. The concept of bilateral reduction is introduced and employed for investigating such a system.},
author = {Cialdea, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular integral systems; Potential theory; Biharmonic problem; multiple layer potential for the biharmonic equation; Dirichlet problem; singular integral system},
language = {eng},
month = {12},
number = {4},
pages = {241-259},
publisher = {Accademia Nazionale dei Lincei},
title = {The multiple layer potential for the biharmonic equation in \( n \) variables},
url = {http://eudml.org/doc/244277},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Cialdea, Alberto
TI - The multiple layer potential for the biharmonic equation in \( n \) variables
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/12//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 4
SP - 241
EP - 259
AB - The definition of multiple layer potential for the biharmonic equation in \( \mathbb{R}^{n} \) is given. In order to represent the solution of Dirichlet problem by means of such a potential, a singular integral system, whose symbol determinant identically vanishes, is considered. The concept of bilateral reduction is introduced and employed for investigating such a system.
LA - eng
KW - Singular integral systems; Potential theory; Biharmonic problem; multiple layer potential for the biharmonic equation; Dirichlet problem; singular integral system
UR - http://eudml.org/doc/244277
ER -
References
top- AGMON, S., Multiple Layer Potential and the Dirichlet Problem for Higher Order Elliptic Equations in the Plane. Comm. Pure Appl. Math., X, 1957, 179-239. Zbl0081.09801MR106323
- CIALDEA, A., Sul problema della derivata obliqua per le funzioni armoniche e questioni connesse. Rend. Acc. Naz. delle Scienze detta dei XL, 12, 1988, 181-200. Zbl0676.35017
- CIALDEA, A., The simple layer potential for the biharmonic equation in variables. Rend. Mat. Acc. Lincei, s. 9, vol. 2, 1991, 115-127. Zbl0734.31007MR1120131
- CIALDEA, A., A multiple layer potential theory alternative to Agmons. Arch. Rat. Mech. Anal., to appear. Zbl0781.31007
- FICHERA, G., Una introduzione alla teoria delle equazioni integrali singolari. Rend. Matem. Roma, 5, 17, 1958, 82-191. Zbl0097.08602MR106328
- FICHERA, G., Spazi lineari di k-misure e di forme differenziali. Proceedings of Intern. Symposium on Linear Spaces (Jerusalem 1960), Israel Academy of Sciences and Humanities, Pergamon Press, Oxford1961, 175-226. Zbl0126.17801MR133434
- FICHERA, G., Operatori di Riesz-Fredholm, operatori riducibili, equazioni integrali singolari, applicazioni. Pubbl. dell'Ist. Matem. dell'Univ. di Roma, 1963.
- FICHERA, G., Generalized biharmonic problem and related eigenvalue problems. In: Blanch Anniversary Volume. Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, 1967, 37-44. Zbl0185.19402MR214940
- FICHERA, G., The problem of the completeness of systems of particular solutions of partial differential equations. Numerical Math., ISNM49, Birkhäuser Verlag, Basel1979, 25-41. Zbl0434.35010MR564084
- FICHERA, G. - DE VITO, L., Funzioni analitiche di una variabile complessa. 3a ed., Veschi, Roma1971. Zbl0226.30001
- HODGE, W. V., A Dirichlet problem for harmonic functionals with applications to analytic varieties. Proc. of the London Math. Soc., 2, 36, 1934, 257-303. Zbl0008.02203MR1575963DOI10.1112/plms/s2-36.1.257
- V. D. KUPRADZE (ed.), Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam1979. Zbl0406.73001MR530377
- MIKHLIN, S. G. - PRÖSSDORF, S., Singular Integral Operators. Springer-Verlag, Berlin1986. Zbl0612.47024MR867687DOI10.1007/978-3-642-61631-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.