Cialdea, Alberto. "The simple layer potential for the biharmonic equation in \( n \) variables." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 115-127. <http://eudml.org/doc/244337>.
@article{Cialdea1991,
abstract = {A theory of the «simple layer potential» for the classical biharmonic problem in \( \mathbb\{R\}^\{n\} \) is worked out. This hinges on the study of a new class of singular integral operators, each of them trasforming a vector with \( n \) scalar components into a vector whose components are \( n \) differential forms of degree one.},
author = {Cialdea, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular integral operators; Differential forms; Biharmonic problem; biharmonic; simple layer potential; singular integral operators},
language = {eng},
month = {6},
number = {2},
pages = {115-127},
publisher = {Accademia Nazionale dei Lincei},
title = {The simple layer potential for the biharmonic equation in \( n \) variables},
url = {http://eudml.org/doc/244337},
volume = {2},
year = {1991},
}
TY - JOUR
AU - Cialdea, Alberto
TI - The simple layer potential for the biharmonic equation in \( n \) variables
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 115
EP - 127
AB - A theory of the «simple layer potential» for the classical biharmonic problem in \( \mathbb{R}^{n} \) is worked out. This hinges on the study of a new class of singular integral operators, each of them trasforming a vector with \( n \) scalar components into a vector whose components are \( n \) differential forms of degree one.
LA - eng
KW - Singular integral operators; Differential forms; Biharmonic problem; biharmonic; simple layer potential; singular integral operators
UR - http://eudml.org/doc/244337
ER -