The simple layer potential for the biharmonic equation in variables
- Volume: 2, Issue: 2, page 115-127
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCialdea, Alberto. "The simple layer potential for the biharmonic equation in \( n \) variables." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 115-127. <http://eudml.org/doc/244337>.
@article{Cialdea1991,
abstract = {A theory of the «simple layer potential» for the classical biharmonic problem in \( \mathbb\{R\}^\{n\} \) is worked out. This hinges on the study of a new class of singular integral operators, each of them trasforming a vector with \( n \) scalar components into a vector whose components are \( n \) differential forms of degree one.},
author = {Cialdea, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular integral operators; Differential forms; Biharmonic problem; biharmonic; simple layer potential; singular integral operators},
language = {eng},
month = {6},
number = {2},
pages = {115-127},
publisher = {Accademia Nazionale dei Lincei},
title = {The simple layer potential for the biharmonic equation in \( n \) variables},
url = {http://eudml.org/doc/244337},
volume = {2},
year = {1991},
}
TY - JOUR
AU - Cialdea, Alberto
TI - The simple layer potential for the biharmonic equation in \( n \) variables
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 115
EP - 127
AB - A theory of the «simple layer potential» for the classical biharmonic problem in \( \mathbb{R}^{n} \) is worked out. This hinges on the study of a new class of singular integral operators, each of them trasforming a vector with \( n \) scalar components into a vector whose components are \( n \) differential forms of degree one.
LA - eng
KW - Singular integral operators; Differential forms; Biharmonic problem; biharmonic; simple layer potential; singular integral operators
UR - http://eudml.org/doc/244337
ER -
References
top- CIALDEA, A., Sul problema della derivata-obliqua per le funzioni armoniche e questioni connesse. Rend. Acc. Naz. delle Scienze detta dei XL, 12, 1988, 181-200. Zbl0676.35017
- CIALDEA, A., Elastostatics with non absolutely continuous data. J. Elas., 23, 1990, 13-51. Zbl0723.73023MR1065229DOI10.1007/BF00041683
- DE VITO, L., Esistenza di un particolare integrale singolare sopra una superficie. Atti Acc. Lincei Mem. fis., s. 8, vol. 7, 1963, 61-90. Zbl0131.10904MR170115
- FICHERA, G., On some general integration methods employed in connection with linear differential equations. J. Math. and Phys., 29, 1950, 59-68. Zbl0038.05902MR39163
- FICHERA, G., Una introduzione alla teoria delle equazioni integrali singolari. Rend. Matem. Roma, (5), 17, 1958, 82-191. Zbl0097.08602MR106328
- FICHERA, G., Spazi lineari di -misure e di forme differenziali. Proceedings of Intern. Symposium on Linear Spaces (Jerusalem 1960), Israel Ac. of Sciences and Humanities, Pergamon Press, Oxford1961, 175-226. Zbl0126.17801MR133434
- FICHERA, G., Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anisotropic inhomogeneous elasticity. In: R. E. LANGER (éd.), Partial Differential Equations and Continuum Mechanics, Madison, 1961, 55-80. Zbl0111.29602MR156084
- FICHERA, G., Operatori di Riesz-Fredholm, operatori riducibili, equazioni integrali singolari, applicazioni. Pubbl. dell'Ist. Matem. dell'Univ. di Roma, 1963.
- FICHERA, G., Linear Elliptic Differential Systems and Eigenvalue Problems. Lecture notes in mathematics, vol. 8, Springer, Berlin-Heidelberg-New York1965. Zbl0138.36104MR209639
- V. D. KUPRADZE (éd.), Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam1979. Zbl0406.73001MR530377
- MIKHLIN, S. G., Multidimensional Singular Integrals and Integral Equations. Pergamon Press, Oxford1965. Zbl0129.07701MR185399
- MUSKHELISHVILI, N. I., Singular integral equations. Noordhoff, Groningen1972 (reprinted). Zbl0174.16201MR355494
- PICONE, M., Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune equazioni lineari alle derivate parziali della fisica-matematica. Ann. Sc. Sup. Pisa, (2), 5, 1936, 213-288. MR1556776JFM62.0564.04
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.