Pseudo-iteration semigroups and commuting holomorphic maps
Graziano Gentili; Fabio Vlacci
- Volume: 5, Issue: 1, page 33-42
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGentili, Graziano, and Vlacci, Fabio. "Pseudo-iteration semigroups and commuting holomorphic maps." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.1 (1994): 33-42. <http://eudml.org/doc/244278>.
@article{Gentili1994,
abstract = {A connection between iteration theory and the study of sets of commuting holomorphic maps is investigated, in the unit disc of \( C \). In particular, given two holomorphic maps \( f \) and \( g \) of the unit disc into itself, it is proved that if \( g \) belongs to the pseudo-iteration semigroup of \( f \) (in the sense of Cowen) then - under certain conditions on the behaviour of their iterates - the maps \( f \) and \( g \) commute.},
author = {Gentili, Graziano, Vlacci, Fabio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Iteration theory; Commuting holomorphic maps; Fixed points; commuting functions; Denjoy-Wolff theorem; iteration; pseudo-iteration semigroup},
language = {eng},
month = {3},
number = {1},
pages = {33-42},
publisher = {Accademia Nazionale dei Lincei},
title = {Pseudo-iteration semigroups and commuting holomorphic maps},
url = {http://eudml.org/doc/244278},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Gentili, Graziano
AU - Vlacci, Fabio
TI - Pseudo-iteration semigroups and commuting holomorphic maps
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/3//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 1
SP - 33
EP - 42
AB - A connection between iteration theory and the study of sets of commuting holomorphic maps is investigated, in the unit disc of \( C \). In particular, given two holomorphic maps \( f \) and \( g \) of the unit disc into itself, it is proved that if \( g \) belongs to the pseudo-iteration semigroup of \( f \) (in the sense of Cowen) then - under certain conditions on the behaviour of their iterates - the maps \( f \) and \( g \) commute.
LA - eng
KW - Iteration theory; Commuting holomorphic maps; Fixed points; commuting functions; Denjoy-Wolff theorem; iteration; pseudo-iteration semigroup
UR - http://eudml.org/doc/244278
ER -
References
top- ABATE, M., Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press, 1989. Zbl0747.32002MR1098711
- BAKER, I. N., Zusammensetzungen ganzer Funktionen. Math. Z., 69, 1958, 121-163. Zbl0178.07502MR97532
- BEHAN, D. F., Commuting analytic functions without fixed points. Proc. Amer. Math. Soc., 37, 1973, 114-120. Zbl0251.30009MR308378
- COWEN, C. C., Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Amer. Math. Soc., 265, 1981, 69-95. Zbl0476.30017MR607108DOI10.2307/1998482
- COWEN, C. C., Commuting analytic functions. Trans. Amer. Math. Soc., 283, 1981, 685-695. Zbl0542.30030MR737892DOI10.2307/1999154
- HADAMARD, J., Two works on iteration and related questions. Bull. Amer. Math. Soc, 50, 1944, 67-75. Zbl0061.26503MR9691
- KOENIGS, G., Recherches sur les substitutions uniformes. Bull. Sci. Math., 7, 1883, 340-357. JFM15.0114.01
- POMMERENKE, CH., On the iteration of analytic functions in half plane, I. J. Lond. Math. Soc., 19, 1979, 439-447. Zbl0398.30014MR540058DOI10.1112/jlms/s2-19.3.439
- SCHROEDER, E., Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann., 2, 1870, 317-363. JFM02.0042.02
- VALIRON, G., Fonctions analytiques. Presses Universitaires de France, Paris1954. Zbl0055.06702MR61658
- VESENTINI, E., Capitoli scelti della teoria delle funzioni olomorfe. Unione Matematica Italiana, 1984. Zbl0691.30003
- WOLFF, J., Sur une généralisation d'un théorème de Schwarz. C.R. Acad. Sci. Paris, 182, 1926, 918-920. JFM52.0309.05
- WOLFF, J., Sur une généralisation d'un théorème de Schwarz. C.R. Acad. Sci. Paris, 183, 1926, 500-502. JFM52.0309.06
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.