The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
- Volume: 7, Issue: 3, page 161-168
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGuidetti, Davide. "The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.3 (1996): 161-168. <http://eudml.org/doc/244293>.
@article{Guidetti1996,
abstract = {We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution \( u \) which is bounded with values in \( C^\{2 + \theta\} (\overline\{\Omega\}) \)(0 < < 1), with\( \partial\_\{t\} u \) bounded with values in \( C^\{\theta\} (\overline\{\Omega\}) \).},
author = {Guidetti, Davide},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Parabolic equations; Cauchy-Dirichlet problem; Maximal regularity; Analytic semigroups; analytic semigroup; maximal regularity; strict solution},
language = {eng},
month = {12},
number = {3},
pages = {161-168},
publisher = {Accademia Nazionale dei Lincei},
title = {The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables},
url = {http://eudml.org/doc/244293},
volume = {7},
year = {1996},
}
TY - JOUR
AU - Guidetti, Davide
TI - The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 3
SP - 161
EP - 168
AB - We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution \( u \) which is bounded with values in \( C^{2 + \theta} (\overline{\Omega}) \)(0 < < 1), with\( \partial_{t} u \) bounded with values in \( C^{\theta} (\overline{\Omega}) \).
LA - eng
KW - Parabolic equations; Cauchy-Dirichlet problem; Maximal regularity; Analytic semigroups; analytic semigroup; maximal regularity; strict solution
UR - http://eudml.org/doc/244293
ER -
References
top- ACQUISTAPACE, P. - TERRENI, B., Hölder classes with boundary conditions as interpolation spaces. Math. Zeit., 195, 1987, 451-471. Zbl0635.35024MR900340DOI10.1007/BF01166699
- BOLLEY, P. - CAMUS, J. - THE LAI, P., Estimation de la résolvante du problème de Dirichlet dans les espaces de Hölder. C. R. Acad. Sci. Paris, 305, Serie I, 1987, 253-256. Zbl0634.35055MR907955
- GUIDETTI, D., On elliptic problems in Besov spaces. Math. Nachr., 152, 1991, 247-275. Zbl0767.46027MR1121237DOI10.1002/mana.19911520120
- KNERR, B., Parabolic interior Schauder estimates by the maximum principle. Arch. Rat. Mech. Anal., 75, 1980, 51-58. Zbl0468.35014MR592103DOI10.1007/BF00284620
- KRUZHKOV, S. - CASTRO, A. - LOPEZ, M., Mayoraciones de Schauder y theorema de existencia de las soluciónes del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (I). Revista Ciencias Matemáticas, vol. 1, n. 1, 1980, 55-76. Zbl0572.35046MR622442
- LOPEZ MORALES, M., Primer problema de contorno para ecuaciones parabolicas lineales y no lineales. Revista Ciencias Matemáticas, vol. 13, n. 1, 1992, 3-20. MR1206783
- LUNARDI, A., Analytic semigroups and optimal regularity in the parabolic problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser, 1995. Zbl0816.35001MR1329547DOI10.1007/978-3-0348-9234-6
- LUNARDI, A. - SINESTRARI, E. - VON WAHL, W., A semigroup approach to the time dependent parabolic initial boundary value problem. Diff. Int. Equations, 63, 1992, 88-116. Zbl0596.45019
- SINESTRARI, E. - VON WAHL, W., On the solutions of the first boundary value problem for the linear parabolic problem. Proc. Royal Soc. Edinburgh, 108A, 1988, 339-355. Zbl0664.35041MR943808DOI10.1017/S0308210500014712
- SOLONNIKOV, V. A., On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., 83 (1965), (ed. O. A. Ladyzenskaya); Amer. Math. Soc, 1967. Zbl0164.12502MR211083
- STEWART, H. B., Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Amer. Math. Soc., 259, 1980, 299-310. Zbl0451.35033MR561838DOI10.2307/1998159
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.