Optimal regularity for mixed parabolic problems in spaces of functions which are Hölder continuous with respect to space variables

Davide Guidetti

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 4, page 763-790
  • ISSN: 0391-173X

How to cite

top

Guidetti, Davide. "Optimal regularity for mixed parabolic problems in spaces of functions which are Hölder continuous with respect to space variables." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1998): 763-790. <http://eudml.org/doc/84348>.

@article{Guidetti1998,
author = {Guidetti, Davide},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {autonomous and nonautonomous problems},
language = {eng},
number = {4},
pages = {763-790},
publisher = {Scuola normale superiore},
title = {Optimal regularity for mixed parabolic problems in spaces of functions which are Hölder continuous with respect to space variables},
url = {http://eudml.org/doc/84348},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Guidetti, Davide
TI - Optimal regularity for mixed parabolic problems in spaces of functions which are Hölder continuous with respect to space variables
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 763
EP - 790
LA - eng
KW - autonomous and nonautonomous problems
UR - http://eudml.org/doc/84348
ER -

References

top
  1. [1] P. Acquistapace - B. Terreni, Hölder classes with boundary conditions as interpolation spaces, Math. Z.195 (1987), 451-471. Zbl0635.35024MR900340
  2. [2] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math.12 (1963), 623-727. Zbl0093.10401MR125307
  3. [3] P. Bolley - J. Camus - P. The Lai, Estimation de la résolvente du probléme de Dirichlet dans les espaces de Hölder, C. R. Acad. Sci. Paris, 305 (1987), Serie I, 253-256. Zbl0634.35055MR907955
  4. [4] D. Guidetti, On elliptic problems in Besov spaces, Math. Nachr.152 (1991), 247-275. Zbl0767.46027MR1121237
  5. [5] D. Guidetti, On interpolation with boundary conditions, Math. Z.207 (1991), 439-460. Zbl0713.46048MR1115176
  6. [6] D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables, Att. Accad. Naz. Lincei Cl. Sci Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. vol. VII-6, 161-168 (1996). Zbl0871.35045MR1454411
  7. [7] S. Kruzhkov - A. Castro - M. Lopez, Mayoraciones de Schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales, Revista Ciencias Matemáticas, vol. 1, n. 1, 55-76 (1980). Zbl0572.35046MR622442
  8. [8] M. López Morales, Primer problema de contorno para ecuaciones parabolicas lineales y no lineales, Revista Ciencias Matemáticas, vol. 13, n. 1, 3-20 (1992). MR1206783
  9. [9] A. Lunardi, "Analytic semigroups and optimal regularity in parabolic problems", Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser (1995). Zbl0816.35001MR1329547
  10. [10] A. Lunardi, Maximal space regularity in nonhomogeneous initial boundary value parabolic problems, Numer. Funct. Anal. Optim.10 (1989), 323-439. Zbl0653.35047MR989538
  11. [11] A. Lunardi - E. Sinestrari - W. Von Wahl, A semigroup approach to the time dependent parabolic initial boundary value problem, Differential Integral Equations63 (1992), 88-116. Zbl0596.45019MR1184027
  12. [12] E. Sinestrari - W. Von Wahl, On the solutions of the first boundary value problem for the linear parabolic problem, Proc. Roy. Soc. Edinburgh Sect. A108 (1988), 339-355. Zbl0664.35041MR943808
  13. [13] V.A. Solonnikov, On the boundary value problems for linear parabolic systems of differential equations of general form, Proc. Steklov Inst. Math. 83 (ed. O. A. Ladyzenskaja) (1965), Amer. Math. Soc. (1967). Zbl0164.12502MR211083
  14. [14] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc.259 (1980), 299-310. Zbl0451.35033MR561838
  15. [15] H. Triebel, "Theory of function spaces", Monographs in Mathematics, Birkhä- user (1983). Zbl0546.46027MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.