Global properties of twistor space

Paolo De Bartolomeis; Luca Migliorini; Antonella Nannicini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 2, page 147-153
  • ISSN: 1120-6330

Abstract

top
We study global properties of the twistor space over an even dimensional conformally flat manifold, proving that the twistor space is Kähler if and only if the manifold is conformally equivalent to the standard -dimensional sphere ().

How to cite

top

De Bartolomeis, Paolo, Migliorini, Luca, and Nannicini, Antonella. "Propriétés globales de l'espace de twisteurs." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 147-153. <http://eudml.org/doc/244296>.

@article{DeBartolomeis1991,
author = {De Bartolomeis, Paolo, Migliorini, Luca, Nannicini, Antonella},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Twistors; Kähler manifolds; Conformally flat manifolds; twistor space; conformally flat manifold},
language = {fre},
month = {6},
number = {2},
pages = {147-153},
publisher = {Accademia Nazionale dei Lincei},
title = {Propriétés globales de l'espace de twisteurs},
url = {http://eudml.org/doc/244296},
volume = {2},
year = {1991},
}

TY - JOUR
AU - De Bartolomeis, Paolo
AU - Migliorini, Luca
AU - Nannicini, Antonella
TI - Propriétés globales de l'espace de twisteurs
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 147
EP - 153
LA - fre
KW - Twistors; Kähler manifolds; Conformally flat manifolds; twistor space; conformally flat manifold
UR - http://eudml.org/doc/244296
ER -

References

top
  1. CAMPANA, F., Espaces de twisteurs dont l'espace de cycles a ses composantes irréductibles compactes. C.R.A.S., 308, s. I, 1989, 565-568. Zbl0682.53035MR999456
  2. DE BARTOLOMEIS, P. - MIGLIORINI, L. - NANNICINI, A., Espace de twisteurs Kähleriens. C.R.A.S., 307, s. I, 1988, 259-261. Zbl0645.53024MR956818
  3. DE BARTOLOMEIS, P. - NANNICINI, A., Handbook of twistor geometry. A paraître. 
  4. DIEDERICH, K. - PFLUG, P., Ubër Gebiete mit vollständiger Kählermetrik. Math. Ann., 257, 1981, 191-198. Zbl0472.32011MR634462DOI10.1007/BF01458284
  5. HARTSHORNE, R., Ample subvarieties of Algebraic varieties. Lecture Notes in Math., 156, 1970. Zbl0208.48901MR282977
  6. HITCHIN, N., Kählerian twistor spaces. Proc. London Math. Soc, (3), 43, 1981, 133-150. Zbl0474.14024MR623721DOI10.1112/plms/s3-43.1.133
  7. KOBAYASHI, S., On compact Kähler manifolds with positive Ricci tensor. Ann. Math., 74, 1961, 570-574. Zbl0107.16002MR133086
  8. KUIPER, N., On conformally flat spaces in the large. Ann. Math., 50, 1949, 916-924 Zbl0041.09303MR31310
  9. SALAMON, S., Harmonic and holomorphic maps. Lecture Notes in Math., 1164, 1985, 161-224. Zbl0591.53031MR829230DOI10.1007/BFb0081912
  10. SCHOEN, R. - YAU, S. T., Conformally flat manifolds, Kleinian groups and scalar curvature. Inv. Math., 92, 1988, 47-71. Zbl0658.53038MR931204DOI10.1007/BF01393992
  11. SLUPINSKI, M., Espaces de twisteurs Kähleriens en dimension , . J. London Math. Soc, (2), 33, 1986, 535-542. Zbl0598.53056MR850969DOI10.1112/jlms/s2-33.3.535

NotesEmbed ?

top

You must be logged in to post comments.