Convex approximation of an inhomogeneous anisotropic functional

Giovanni Bellettini; Maurizio Paolini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 2, page 177-187
  • ISSN: 1120-6330

Abstract

top
The numerical minimization of the functional F u = Ω ϕ x , ν u D u + Ω μ u d H n - 1 - Ω κ u d x , u B V Ω ; - 1 , 1 is addressed. The function ϕ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that F can be equivalently minimized on the convex set B V Ω ; - 1 , 1 and then regularized with a sequence F ϵ u ϵ , of stricdy convex functionals defined on B V Ω ; - 1 , 1 . Then both F and F ϵ , can be discretized by continuous linear finite elements. The convexity property of the functionals on B V Ω ; - 1 , 1 is useful in the numerical minimization of F . The Γ L 1 Ω -convergence of the discrete functionals F h h and F ϵ , h ϵ , h to F , as well as the compactness of any sequence of discrete absolute minimizers, are proven.

How to cite

top

Bellettini, Giovanni, and Paolini, Maurizio. "Convex approximation of an inhomogeneous anisotropic functional." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 177-187. <http://eudml.org/doc/244308>.

@article{Bellettini1994,
abstract = {The numerical minimization of the functional \( \mathcal\{F\} (u) = \int\_\{\Omega\} \phi (x,\nu\_\{u\}) |Du| + \int\_\{\partial \Omega\} \mu u \, d\mathcal\{H\}^\{n-1\} - \int\_\{\Omega\} \kappa u \, dx \), \( u \in BV(\Omega; \\{-1, 1\\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal\{F\} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \\{\mathcal\{F\}\_\{\epsilon\}(u)\\}\_\{\epsilon\} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal\{F\} \) and \( \mathcal\{F\}\_\{\epsilon\} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal\{F\} \). The \( \Gamma — L\_\{1\} (\Omega) \)-convergence of the discrete functionals \( \\{ \mathcal\{F\}\_\{h\} \\}\_\{h\} \) and \( \\{ \mathcal\{F\}\_\{\epsilon,h\} \\}\_\{\epsilon,h\} \) to \( \mathcal\{F\} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.},
author = {Bellettini, Giovanni, Paolini, Maurizio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations; convex approximation; anisotropic functional; phase transitions; crystal growth; finite element; uniform convergence},
language = {eng},
month = {6},
number = {2},
pages = {177-187},
publisher = {Accademia Nazionale dei Lincei},
title = {Convex approximation of an inhomogeneous anisotropic functional},
url = {http://eudml.org/doc/244308},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
TI - Convex approximation of an inhomogeneous anisotropic functional
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 177
EP - 187
AB - The numerical minimization of the functional \( \mathcal{F} (u) = \int_{\Omega} \phi (x,\nu_{u}) |Du| + \int_{\partial \Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \), \( u \in BV(\Omega; \{-1, 1\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal{F} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \{\mathcal{F}_{\epsilon}(u)\}_{\epsilon} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal{F} \) and \( \mathcal{F}_{\epsilon} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal{F} \). The \( \Gamma — L_{1} (\Omega) \)-convergence of the discrete functionals \( \{ \mathcal{F}_{h} \}_{h} \) and \( \{ \mathcal{F}_{\epsilon,h} \}_{\epsilon,h} \) to \( \mathcal{F} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.
LA - eng
KW - Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations; convex approximation; anisotropic functional; phase transitions; crystal growth; finite element; uniform convergence
UR - http://eudml.org/doc/244308
ER -

References

top
  1. ALMGREN, F. - TAYLOR, J. E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
  2. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Convex approximations of functional with curvature. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 297-306. Zbl0754.65066MR1152636
  3. BUTTAZZO, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, Harlow1989. Zbl0669.49005MR1020296
  4. CAGINALP, G., The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math., 44, 1990, 77-94. Zbl0712.35114MR1044256DOI10.1093/imamat/44.1.77
  5. CAHN, J. W. - HANDWERKER, C. A. - TAYLOR, J. E., Geometric models of crystal growth. Acta Metall., 40, 1992, 1443-1474. 
  6. CIARLET, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
  7. DAL MASO, G., Integral representation on B V Ω of Γ -limits of variational integrals. Manuscripta Math., 30, 1980, 387-416. Zbl0435.49016MR567216DOI10.1007/BF01301259
  8. DE GIORGI, E., Free discontinuity problems in calculus of variations. In: R. DAUTRAY (éd.), Frontières in Pure and Applied Mathematics. North-Holland, Amsterdam1991, 55-62. Zbl0758.49002MR1110593
  9. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, 58, 1975, 842-850. Zbl0339.49005MR448194
  10. FEDERER, H., Geometrie Measure Theory. Springer-Verlag, Berlin1968. Zbl0874.49001
  11. GAGLIARDO, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27, 1957, 284-305. Zbl0087.10902MR102739
  12. GIUSTI, E., Minimal Surfaces and Functions of Bounded. Birkhäuser, Boston1984. MR775682
  13. LUCKHAUS, S. - MODICA, L., The Gibbs-Thomson Variation relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal., 107, 1, 1989, 71-83. Zbl0681.49012MR1000224DOI10.1007/BF00251427
  14. MIRANDA, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. PisaCl. Sci. (4), 3, 1964, 515-542. Zbl0152.24402MR174706
  15. RESHETNYAK, Yu. G., Weak convergence of completely additive functions on a set. Siberian Math. J., 9, 1968, 1039-1045. Zbl0176.44402
  16. VOL'PERT, A. I., The space B V and quasilinear equations. Math. USSR Sbornik, 2, 1967, 225-267. Zbl0168.07402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.