Convex approximation of an inhomogeneous anisotropic functional
Giovanni Bellettini; Maurizio Paolini
- Volume: 5, Issue: 2, page 177-187
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBellettini, Giovanni, and Paolini, Maurizio. "Convex approximation of an inhomogeneous anisotropic functional." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 177-187. <http://eudml.org/doc/244308>.
@article{Bellettini1994,
abstract = {The numerical minimization of the functional \( \mathcal\{F\} (u) = \int\_\{\Omega\} \phi (x,\nu\_\{u\}) |Du| + \int\_\{\partial \Omega\} \mu u \, d\mathcal\{H\}^\{n-1\} - \int\_\{\Omega\} \kappa u \, dx \), \( u \in BV(\Omega; \\{-1, 1\\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal\{F\} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \\{\mathcal\{F\}\_\{\epsilon\}(u)\\}\_\{\epsilon\} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal\{F\} \) and \( \mathcal\{F\}\_\{\epsilon\} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal\{F\} \). The \( \Gamma — L\_\{1\} (\Omega) \)-convergence of the discrete functionals \( \\{ \mathcal\{F\}\_\{h\} \\}\_\{h\} \) and \( \\{ \mathcal\{F\}\_\{\epsilon,h\} \\}\_\{\epsilon,h\} \) to \( \mathcal\{F\} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.},
author = {Bellettini, Giovanni, Paolini, Maurizio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations; convex approximation; anisotropic functional; phase transitions; crystal growth; finite element; uniform convergence},
language = {eng},
month = {6},
number = {2},
pages = {177-187},
publisher = {Accademia Nazionale dei Lincei},
title = {Convex approximation of an inhomogeneous anisotropic functional},
url = {http://eudml.org/doc/244308},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
TI - Convex approximation of an inhomogeneous anisotropic functional
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 177
EP - 187
AB - The numerical minimization of the functional \( \mathcal{F} (u) = \int_{\Omega} \phi (x,\nu_{u}) |Du| + \int_{\partial \Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \), \( u \in BV(\Omega; \{-1, 1\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal{F} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \{\mathcal{F}_{\epsilon}(u)\}_{\epsilon} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal{F} \) and \( \mathcal{F}_{\epsilon} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal{F} \). The \( \Gamma — L_{1} (\Omega) \)-convergence of the discrete functionals \( \{ \mathcal{F}_{h} \}_{h} \) and \( \{ \mathcal{F}_{\epsilon,h} \}_{\epsilon,h} \) to \( \mathcal{F} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.
LA - eng
KW - Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations; convex approximation; anisotropic functional; phase transitions; crystal growth; finite element; uniform convergence
UR - http://eudml.org/doc/244308
ER -
References
top- ALMGREN, F. - TAYLOR, J. E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
- BELLETTINI, G. - PAOLINI, M. - VERDI, C., Convex approximations of functional with curvature. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 297-306. Zbl0754.65066MR1152636
- BUTTAZZO, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, Harlow1989. Zbl0669.49005MR1020296
- CAGINALP, G., The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math., 44, 1990, 77-94. Zbl0712.35114MR1044256DOI10.1093/imamat/44.1.77
- CAHN, J. W. - HANDWERKER, C. A. - TAYLOR, J. E., Geometric models of crystal growth. Acta Metall., 40, 1992, 1443-1474.
- CIARLET, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
- DAL MASO, G., Integral representation on of -limits of variational integrals. Manuscripta Math., 30, 1980, 387-416. Zbl0435.49016MR567216DOI10.1007/BF01301259
- DE GIORGI, E., Free discontinuity problems in calculus of variations. In: R. DAUTRAY (éd.), Frontières in Pure and Applied Mathematics. North-Holland, Amsterdam1991, 55-62. Zbl0758.49002MR1110593
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, 58, 1975, 842-850. Zbl0339.49005MR448194
- FEDERER, H., Geometrie Measure Theory. Springer-Verlag, Berlin1968. Zbl0874.49001
- GAGLIARDO, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili. Rend. Sem. Mat. Univ. Padova, 27, 1957, 284-305. Zbl0087.10902MR102739
- GIUSTI, E., Minimal Surfaces and Functions of Bounded. Birkhäuser, Boston1984. MR775682
- LUCKHAUS, S. - MODICA, L., The Gibbs-Thomson Variation relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal., 107, 1, 1989, 71-83. Zbl0681.49012MR1000224DOI10.1007/BF00251427
- MIRANDA, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. PisaCl. Sci. (4), 3, 1964, 515-542. Zbl0152.24402MR174706
- RESHETNYAK, Yu. G., Weak convergence of completely additive functions on a set. Siberian Math. J., 9, 1968, 1039-1045. Zbl0176.44402
- VOL'PERT, A. I., The space and quasilinear equations. Math. USSR Sbornik, 2, 1967, 225-267. Zbl0168.07402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.