Convex approximations of functionals with curvature

Giovanni Bellettini; Maurizio Paolini; Claudio Verdi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 4, page 297-306
  • ISSN: 1120-6330

Abstract

top
We address the numerical minimization of the functional F v = Ω D v + Ω μ v d H n - 1 - Ω x v d x , for v B V Ω ; - 1 , 1 . We note that F can be equivalently minimized on the larger, convex, set B V Ω ; - 1 , 1 and that, on that space, F may be regularized with a sequence { F ϵ ( v ) = Ω ϵ 2 + D v 2 + Ω μ v d H n - 1 - Ω x v d x } ϵ of regular functionals. Then both F and F ϵ can be discretized by continuous linear finite elements. The convexity of the functionals in B V Ω ; - 1 , 1 is useful for the numerical minimization of F . We prove the Γ - L 1 Ω -convergence of the discrete functionals to F and present a few numerical examples.

How to cite

top

Bellettini, Giovanni, Paolini, Maurizio, and Verdi, Claudio. "Convex approximations of functionals with curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.4 (1991): 297-306. <http://eudml.org/doc/244157>.

@article{Bellettini1991,
abstract = {We address the numerical minimization of the functional \( \mathcal\{F\} (v) = \int\_\{\Omega\} |Dv| + \int\_\{\partial \Omega\} \mu v \, d\mathcal\{H\}^\{n-1\} - \int\_\{\Omega\} x v \, dx \), for \( v \in BV(\Omega; \\{-1,1\\}) \). We note that \( \mathcal\{F\} \) can be equivalently minimized on the larger, convex, set \( BV(\Omega; \left[-1,1\right]) \) and that, on that space, \( \mathcal\{F\} \) may be regularized with a sequence \( \\{ \mathcal\{F\}\_\{\epsilon\}(v) = \int\_\{\Omega\} \sqrt\{ \epsilon^\{2\} + |Dv|^\{2\}\} + \int\_\{\partial \Omega\} \mu v \, d\mathcal\{H\}^\{n-1\} - \int\_\{\Omega\} xv \, dx \\}\_\{\epsilon\} \)of regular functionals. Then both \( \mathcal\{F\} \) and \( \mathcal\{F\}\_\{\epsilon\} \) can be discretized by continuous linear finite elements. The convexity of the functionals in \( BV(\Omega; \left[-1,1\right]) \) is useful for the numerical minimization of \( \mathcal\{F\} \). We prove the \( \Gamma - L^\{1\} (\Omega) \)-convergence of the discrete functionals to \( \mathcal\{F\} \) and present a few numerical examples.},
author = {Bellettini, Giovanni, Paolini, Maurizio, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {calculus of variations; surfaces with prescribed mean curvature; convergence; computer vision; convex approximations; finite elements},
language = {eng},
month = {12},
number = {4},
pages = {297-306},
publisher = {Accademia Nazionale dei Lincei},
title = {Convex approximations of functionals with curvature},
url = {http://eudml.org/doc/244157},
volume = {2},
year = {1991},
}

TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
AU - Verdi, Claudio
TI - Convex approximations of functionals with curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/12//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 4
SP - 297
EP - 306
AB - We address the numerical minimization of the functional \( \mathcal{F} (v) = \int_{\Omega} |Dv| + \int_{\partial \Omega} \mu v \, d\mathcal{H}^{n-1} - \int_{\Omega} x v \, dx \), for \( v \in BV(\Omega; \{-1,1\}) \). We note that \( \mathcal{F} \) can be equivalently minimized on the larger, convex, set \( BV(\Omega; \left[-1,1\right]) \) and that, on that space, \( \mathcal{F} \) may be regularized with a sequence \( \{ \mathcal{F}_{\epsilon}(v) = \int_{\Omega} \sqrt{ \epsilon^{2} + |Dv|^{2}} + \int_{\partial \Omega} \mu v \, d\mathcal{H}^{n-1} - \int_{\Omega} xv \, dx \}_{\epsilon} \)of regular functionals. Then both \( \mathcal{F} \) and \( \mathcal{F}_{\epsilon} \) can be discretized by continuous linear finite elements. The convexity of the functionals in \( BV(\Omega; \left[-1,1\right]) \) is useful for the numerical minimization of \( \mathcal{F} \). We prove the \( \Gamma - L^{1} (\Omega) \)-convergence of the discrete functionals to \( \mathcal{F} \) and present a few numerical examples.
LA - eng
KW - calculus of variations; surfaces with prescribed mean curvature; convergence; computer vision; convex approximations; finite elements
UR - http://eudml.org/doc/244157
ER -

References

top
  1. AMBROSIO, L. - DE GIORGI, E., Su un nuovo tipo di funzionale del calcolo delle variazioni. Atti Acc. Lincei Rend. fis., s. 8, 82, 1988, 199-210. Zbl0715.49014MR1152641
  2. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Γ -convergence of discrete approximations to interfaces with prescribed mean curvature. Rend. Mat. Acc. Lincei, s. 9, 1, 1990, 317-328. Zbl0721.49038MR1096825
  3. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Numerical minimization of geometrical type problems related to calculus of variations. Calcolo, to appear. Zbl0733.49039MR1141029DOI10.1007/BF02575797
  4. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Numerical minimization of functional with curvature by convex approximations. Proceedings of the First European Conference on Elliptic and Parabolic Problems (Pont-à-Mousson, 1991), 1991, to appear. Zbl0790.53005MR1194193
  5. CAGINALP, G., The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn- Hilliard models as asymptotic limits. IMA J. Appl. Math., 44, 1990, 77-94. Zbl0712.35114MR1044256DOI10.1093/imamat/44.1.77
  6. CIARLET, P. G., The finite element method for elliptic problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
  7. DE GIORGI, E., Free discontinuity problems in calculus of variations. Proceedings of the Meeting in honour of J. L. Lions, North-Holland, Amsterdam1988, to appear. Zbl0758.49002MR1110593
  8. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, 58, 1975, 842-850. Zbl0339.49005MR448194
  9. FEDERER, H., Geometric measure theory. Springer Verlag, Berlin1968. Zbl0874.49001MR257325
  10. FINN, R., Equilibrium capillary surfaces. Springer Verlag, Berlin1986. Zbl0583.35002MR816345DOI10.1007/978-1-4613-8584-4
  11. GAGLIARDO, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Seminario Matem. Univ. Padova, 27, 1957, 284-305. Zbl0087.10902MR102739
  12. GIUSTI, E., Minimal surface and functions of bounded variation. Birkhäuser, Boston1984. Zbl0545.49018MR775682
  13. MASSARI, U. - MIRANDA, M., Minimal surfaces of codimension one. North-Holland, Amsterdam1984. Zbl0565.49030MR795963
  14. MODICA, L., Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire, 4, 1987, 487-512. Zbl0642.49009MR921549
  15. MODICA, L. - MORTOLA, S., Un esempio di Γ -convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. Zbl0356.49008MR445362
  16. MUMFORD, D. - SHAH, J., Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math., 42, 1989, 577-685. Zbl0691.49036MR997568DOI10.1002/cpa.3160420503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.