Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff

Maria Letizia Bertotti; Sergey V. Bolotin

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 2, page 93-100
  • ISSN: 1120-6330

Abstract

top
We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as t ± , to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.

How to cite

top

Bertotti, Maria Letizia, and Bolotin, Sergey V.. "Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.2 (1997): 93-100. <http://eudml.org/doc/244324>.

@article{Bertotti1997,
abstract = {We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as \( t \rightarrow \pm \infty \), to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.},
author = {Bertotti, Maria Letizia, Bolotin, Sergey V.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lagrangian systems; Routh method; Doubly asymptotic trajectories; Calculus of variations; calculus of variations; Lagrangian functions; quadratic time dependence; existence of infinitely many solutions},
language = {eng},
month = {7},
number = {2},
pages = {93-100},
publisher = {Accademia Nazionale dei Lincei},
title = {Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff},
url = {http://eudml.org/doc/244324},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Bertotti, Maria Letizia
AU - Bolotin, Sergey V.
TI - Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/7//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 2
SP - 93
EP - 100
AB - We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as \( t \rightarrow \pm \infty \), to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.
LA - eng
KW - Lagrangian systems; Routh method; Doubly asymptotic trajectories; Calculus of variations; calculus of variations; Lagrangian functions; quadratic time dependence; existence of infinitely many solutions
UR - http://eudml.org/doc/244324
ER -

References

top
  1. ARNOLD, V. I. - KOZLOV, V. V. - NEISHTADT, A. I., Dynamical systems III. VINITI, Moscow1985; English transl. in Springer-Verlag, New York-Heidelberg-Berlin1988. MR923953DOI10.1007/978-3-642-61551-1
  2. BERTOTTI, M. L. - BOLOTIN, S. V., Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields. Annali di Matematica Pura e Applicata, in press. Zbl0971.70021
  3. BOLOTIN, S. V., The existence of homoclinic motions. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 6, 1983, 98-103 (in Russian); English transl. in Moscow Univ. Math. Boll., 38, 1983, 117-123. Zbl0549.58019MR728558
  4. BOLOTIN, S. V. - KOZLOV, V. V., On the asymptotic solutions of the equations of dynamics. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 4, 1980, 84-89 (in Russian); English transl. in Moscow Univ. Math. Boll., 35, 1980, 82-88. Zbl0439.70020MR585456
  5. CHAPLYGIN, S. A., On the motion of heavy bodies in an incompressible fluid, Collected papers 1. Izd-vo Akad. Nauk SSSR, Leningrad1933, 133-150 (in Russian). 
  6. EELLS, J., A setting for global analysis. Bull. Amer. Math. Soc., 72, 1966, 751-807. Zbl0191.44101MR203742
  7. GIANNONI, F. - RABINOWTTZ, P. H., On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems. Nonlinear Differential Equations and Applications, 1, 1993, 1-46. Zbl0823.34050MR1273342DOI10.1007/BF01194038
  8. HAGEDORN, P., Über die Instabilität konservativer Systeme mit gyroskopischen Kräften. Arch. Rat. Mech. Anal., 58, 1975, 1-9. Zbl0329.70008MR395417
  9. KIRCHHOFF, G., Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. für die reine und angewandte Mathematik, 71, 1870, 237-262. JFM02.0731.01
  10. KOZLOV, V. V., On the fall of an heavy rigid body in a ideal fluid. Meck. Tverd. Tela, 5, 1989, 10-17 (in Russian). Zbl1119.70009
  11. KOZLOV, V. V., On the stability of equilibrium positions in nonstationary force fields. J. Appl. Math. Mech., 55, 1991, 8-13. Zbl0747.70017MR1107493DOI10.1016/0021-8928(91)90054-X
  12. LAMB, H., Hydrodynamics. Dover Publications, New York1945. JFM36.0817.07
  13. PALAIS, R. S., Morse theory on Hilbert manifolds. Topology, 2, 1963, 299-340. Zbl0122.10702MR158410
  14. PALAIS, R. S. - SMALE, S., A generalized Morse theory. Bull. Amer. Math. Soc., 70, 1964, 165-171. Zbl0119.09201MR158411

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.